Guojie Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/430373/publications.pdf

Version: 2024-02-01

		186265	175258
83	3,029	28	52
papers	citations	h-index	g-index
85	85	85	4196
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Recent reversal in loss of global terrestrialÂbiomass. Nature Climate Change, 2015, 5, 470-474.	18.8	447
2	Drought losses in China might double between the 1.5 \hat{A}° C and 2.0 \hat{A}° C warming. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10600-10605.	7.1	328
3	Spatiotemporal Satellite Image Fusion Using Deep Convolutional Neural Networks. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11, 821-829.	4.9	219
4	Future drought characteristics through a multi-model ensemble from CMIP6 over South Asia. Atmospheric Research, 2020, 246, 105111.	4.1	138
5	Tens of thousands additional deaths annually in cities of China between 1.5 °C and 2.0 °C warming. Nature Communications, 2019, 10, 3376.	12.8	105
6	Photo, pH and redox multi-responsive nanogels for drug delivery and fluorescence cell imaging. Polymer Chemistry, 2017, 8, 6150-6157.	3.9	96
7	Shift in potential evapotranspiration and its implications for dryness/wetness over Southwest China. Journal of Geophysical Research D: Atmospheres, 2016, 121, 9342-9355.	3.3	68
8	Trend in Extreme Precipitation Indices Based on Long Term In Situ Precipitation Records over Pakistan. Water (Switzerland), 2020, 12, 797.	2.7	65
9	Doubling of the population exposed to drought over South Asia: CMIP6 multi-model-based analysis. Science of the Total Environment, 2021, 771, 145186.	8.0	56
10	NIR Light-, Temperature-, pH-, and Redox-Responsive Polymer-Modified Reduced Graphene Oxide/Mesoporous Silica Sandwich-Like Nanocomposites for Controlled Release. ACS Applied Materials & Diterfaces, 2017, 9, 29055-29062.	8.0	54
11	Revisiting the evolution of the 2009–2011 meteorological drought over Southwest China. Journal of Hydrology, 2019, 568, 385-402.	5.4	54
12	Water Identification from High-Resolution Remote Sensing Images Based on Multidimensional Densely Connected Convolutional Neural Networks. Remote Sensing, 2020, 12, 795.	4.0	54
13	On the coupling between precipitation and potential evapotranspiration: contributions to decadal drought anomalies in the Southwest China. Climate Dynamics, 2017, 48, 3779-3797.	3.8	52
14	Photoâ€Responsive Fluorescent Materials with Aggregationâ€Induced Emission Characteristics. Advanced Optical Materials, 2020, 8, 2001362.	7.3	50
15	Ultralong and Highâ€Efficiency Room Temperature Phosphorescence of Organicâ€Phosphorsâ€Doped Polymer Films Enhanced by 3D Network. Advanced Optical Materials, 2020, 8, 2001192.	7.3	47
16	Spatiotemporal variations of soil moisture in the Tarim River basin, China. International Journal of Applied Earth Observation and Geoinformation, 2016, 48, 122-130.	2.8	45
17	Robust drying and wetting trends found in regions over China based on Köppen climate classifications. Journal of Geophysical Research D: Atmospheres, 2017, 122, 4228-4237.	3.3	44
18	Light-Responsive Janus-Particle-Based Coatings for Cell Capture and Release. ACS Macro Letters, 2017, 6, 1124-1128.	4.8	43

#	Article	IF	Citations
19	NIR light-responsive nanocarriers for controlled release. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2021, 47, 100420.	11.6	43
20	Photochromic Dendrimers for Photoswitched Solid-To-Liquid Transitions and Solar Thermal Fuels. ACS Applied Materials & Solar Thermal Fuels. ACS Applied Materials & Solar Thermal Fuels.	8.0	41
21	Long-term changes in evapotranspiration over China and attribution to climatic drivers during 1980–2010. Journal of Hydrology, 2021, 595, 126037.	5.4	40
22	NIR-Light- and pH-Responsive Graphene Oxide Hybrid Cyclodextrin-Based Supramolecular Hydrogels. Langmuir, 2019, 35, 1021-1031.	3.5	38
23	Attributing the Changes in Reference Evapotranspiration in Southwestern China Using a New Separation Method. Journal of Hydrometeorology, 2017, 18, 777-798.	1.9	37
24	UVâ€"visâ€"NIR light-induced bending of shape-memory polyurethane composites doped with azobenzene and upconversion nanoparticles. Polymer, 2019, 178, 121644.	3.8	34
25	On the longâ€term changes of drought over China (1948–2012) from different methods of potential evapotranspiration estimations. International Journal of Climatology, 2018, 38, 2954-2966.	3.5	33
26	Reversibly Photoswitchable Dual-Color Fluorescence and Controlled Release Properties of Polymeric Nanoparticles. Macromolecules, 2019, 52, 7130-7136.	4.8	33
27	Arylazopyrazole-Based Dendrimer Solar Thermal Fuels: Stable Visible Light Storage and Controllable Heat Release. ACS Applied Materials & Samp; Interfaces, 2021, 13, 22655-22663.	8.0	33
28	Visible-light-responsive polymeric multilayers for trapping and release of cargoes via host–guest interactions. Polymer Chemistry, 2017, 8, 5525-5532.	3.9	31
29	Hyperspectral image denoising via low-rank matrix recovery. Remote Sensing Letters, 2014, 5, 872-881.	1.4	29
30	A Time-Varying Causality Formalism Based on the Liang–Kleeman Information Flow for Analyzing Directed Interactions in Nonstationary Climate Systems. Journal of Climate, 2019, 32, 7521-7537.	3.2	29
31	Future drought in <scp>CMIP6</scp> projections and the socioeconomic impacts in China. International Journal of Climatology, 2021, 41, 4151-4170.	3.5	29
32	Comparisons of remote sensing and reanalysis soil moisture products over the Tibetan Plateau, China. Cold Regions Science and Technology, 2018, 146, 110-121.	3.5	27
33	Photodegradable polymer nanocapsules fabricated from dimethyldiethoxysilane emulsion templates for controlled release. Polymer Chemistry, 2017, 8, 6817-6823.	3.9	26
34	Multifunctional Optical Polymeric Films with Photochromic, Fluorescent, and Ultra‣ong Room Temperature Phosphorescent Properties. Advanced Optical Materials, 2021, 9, 2101266.	7.3	26
35	Diazonaphthoquinone-based amphiphilic polymer assemblies for NIR/UV light- and pH-responsive controlled release. Polymer Chemistry, 2018, 9, 463-471.	3.9	21
36	Assessment of the impact of spatial heterogeneity on microwave satellite soil moisture periodic error. Remote Sensing of Environment, 2018, 205, 85-99.	11.0	21

#	Article	IF	CITATIONS
37	Changes of actual evapotranspiration and its components in the Yangtze River valley during 1980–2014 from satellite assimilation product. Theoretical and Applied Climatology, 2019, 138, 1493-1510.	2.8	21
38	A Spatio-Temporal Analysis of Active Fires over China during 2003–2016. Remote Sensing, 2020, 12, 1787.	4.0	21
39	Molecular Solar Thermal Systems towards Phase Change and Visible Light Photon Energy Storage. Small, 2022, 18, e2107473.	10.0	21
40	Spatio-temporal analysis of precipitable water vapour over northwest china utilizing MERSI/FY-3A products. International Journal of Remote Sensing, 2018, 39, 3094-3110.	2.9	19
41	Molecular Solar Thermal Storage Enhanced by Hyperbranched Structures. Solar Rrl, 2020, 4, 1900422.	5.8	19
42	Dissecting Performances of PERSIANN-CDR Precipitation Product over Huai River Basin, China. Remote Sensing, 2019, 11, 1805.	4.0	17
43	Soil Moisture Retrieval From SAR and Optical Data Using a Combined Model. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12, 637-647.	4.9	16
44	Identifying Cotton Fields from Remote Sensing Images Using Multiple Deep Learning Networks. Agronomy, 2021, 11, 174.	3.0	16
45	An Evaluation of Soil Moisture Anomalies from Global Model-Based Datasets over the People's Republic of China. Water (Switzerland), 2020, 12, 117.	2.7	16
46	Advantages of Using Microwave Satellite Soil Moisture over Gridded Precipitation Products and Land Surface Model Output in Assessing Regional Vegetation Water Availability and Growth Dynamics for a Lateral Inflow Receiving Landscape. Remote Sensing, 2016, 8, 428.	4.0	15
47	Improving the Spatial Resolution of FY-3 Microwave Radiation Imager via Fusion With FY-3/MERSI. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10, 3055-3063.	4.9	15
48	Light-Switchable Adhesion of Azobenzene-Containing Siloxane-Based Tough Adhesive. ACS Applied Polymer Materials, 2021, 3, 2325-2329.	4.4	15
49	Projected Land Evaporation and Its Response to Vegetation Greening Over China Under Multiple Scenarios in the CMIP6 Models. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006327.	3.0	15
50	The Evaluation of Single-Sensor Surface Soil Moisture Anomalies over the Mainland of the People's Republic of China. Remote Sensing, 2017, 9, 149.	4.0	14
51	Future Changes in Simulated Evapotranspiration across Continental Africa Based on CMIP6 CNRM-CM6. International Journal of Environmental Research and Public Health, 2021, 18, 6760.	2.6	14
52	Evaluation of soil moisture derived from FY3B microwave brightness temperature over the Tibetan Plateau. Remote Sensing Letters, 2016, 7, 817-826.	1.4	13
53	Long-term changes in soil moisture conditions and their relation to atmospheric circulation in the Poyang Lake basin, China. Quaternary International, 2017, 440, 23-29.	1.5	12
54	Evapotranspiration and its Components in the Nile River Basin Based on Long-Term Satellite Assimilation Product. Water (Switzerland), 2019, 11, 1400.	2.7	12

#	Article	IF	CITATIONS
55	Estimation of economic losses from tropical cyclones in China at 1.5 °C and 2.0 °C warming using the regional climate model COSMOâ€CLM. International Journal of Climatology, 2019, 39, 724-737.	3.5	12
56	Sensor Fusion Basketball Shooting Posture Recognition System Based on CNN. Journal of Sensors, 2021, 2021, 1-16.	1.1	12
57	Attribution of global evapotranspiration trends based on the Budyko framework. Hydrology and Earth System Sciences, 2022, 26, 3691-3707.	4.9	12
58	Regional frequency analysis of observed sub-daily rainfall maxima over eastern China. Advances in Atmospheric Sciences, 2017, 34, 209-225.	4.3	11
59	Multiple change detection for multispectral remote sensing images via joint sparse representation. Optical Engineering, 2014, 53, 123103.	1.0	10
60	Dependence of 3â€month Standardized Precipitationâ€Evapotranspiration Index dryness/wetness sensitivity on climatological precipitation over southwest China. International Journal of Climatology, 2018, 38, 4568-4578.	3.5	10
61	Estimation of Corn Canopy Chlorophyll Content Using Derivative Spectra in the O2–A Absorption Band. Frontiers in Plant Science, 2019, 10, 1047.	3.6	10
62	Capacity of Satellite-Based and Reanalysis Precipitation Products in Detecting Long-Term Trends across Mainland China. Remote Sensing, 2020, 12, 2902.	4.0	10
63	Spatiotemporal Characteristics and Trend Analysis of Two Evapotranspiration-Based Drought Products and Their Mechanisms in Sub-Saharan Africa. Remote Sensing, 2021, 13, 533.	4.0	10
64	Capacity of the PERSIANN-CDR Product in Detecting Extreme Precipitation over Huai River Basin, China. Remote Sensing, 2021, 13, 1747.	4.0	10
65	K-Means and C4.5 Decision Tree Based Prediction of Long-Term Precipitation Variability in the Poyang Lake Basin, China. Atmosphere, 2021, 12, 834.	2.3	9
66	Spatiotemporal Changes and Frequency Analysis of Multiday Extreme Precipitation in the Huai River Basin during 1960 to 2014. Advances in Meteorology, 2019, 2019, 1-12.	1.6	8
67	Maximizing Temporal Correlations in Long-Term Global Satellite Soil Moisture Data-Merging. Remote Sensing, 2020, 12, 2164.	4.0	8
68	Spatial pattern of reference evapotranspiration change and its temporal evolution over Southwest China. Theoretical and Applied Climatology, 2017, 130, 979-992.	2.8	7
69	Asymmetric NDVI trends of the two cropping seasons in the Huai River basin. Remote Sensing Letters, 2016, 7, 61-70.	1.4	6
70	Improved surface soil moisture anomalies from Fengyun-3B over the Jiangxi province of the People's Republic of China. International Journal of Remote Sensing, 2018, 39, 8950-8962.	2.9	6
71	Effect of <scp>CO₂</scp> concentration on drought assessment in China. International Journal of Climatology, 2022, 42, 7465-7482.	3.5	6
72	Machine-Learning-Based Change Detection of Newly Constructed Areas from GF-2 Imagery in Nanjing, China. Remote Sensing, 2022, 14, 2874.	4.0	6

#	Article	IF	CITATIONS
73	Changes of Soil Moisture from Multiple Sources during 1988–2010 in the Yellow River Basin, China. Advances in Meteorology, 2018, 2018, 1-14.	1.6	5
74	Encounter Probability and Risk of Flood and Drought under Future Climate Change in the Two Tributaries of the Rao River Basin, China. Water (Switzerland), 2020, 12, 104.	2.7	4
75	Spatial distribution characteristics of drought disasters in Hunan Province of China from 1644 to 1911 based on EOF and REOF methods. Environmental Earth Sciences, 2021, 80, 1.	2.7	4
76	A Framework to Assess the Potential Uncertainties of Three FPAR Products. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006320.	3.0	4
77	Analysis of the longâ€ŧerm highâ€resolution infrared radiation sounder land surface temperature against ground measurements during 1980–2009 in the Poyang Lake basin, China. International Journal of Climatology, 2018, 38, 5733-5745.	3.5	3
78	Spatiotemporal Differences in Dominants of Dryness/Wetness Changes in Southwest China. Advances in Meteorology, 2019, 2019, 1-16.	1.6	3
79	Longâ€term changes in layered soil temperature based on ground measurements in Jiangsu Province, China. International Journal of Climatology, 2021, 41, 2996-3009.	3.5	3
80	Towards Consistent Soil Moisture Records from China's FengYun-3 Microwave Observations. Remote Sensing, 2022, 14, 1225.	4.0	3
81	Land Management Explains the Contrasting Greening Pattern Across Chinaâ€Russia Border Based on Paired Land Use Experiment Approach. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	3.0	3
82	Spatiotemporal Variations in the Urban Heat Islands across the Coastal Cities in the Yangtze River Delta, China. Marine Geodesy, 2021, 44, 467-484.	2.0	2
83	Soil Moisture Retrieval Using Modified Vegetation Backscattering Model Based on Radarsat-2 Data. , 2018, , .		0