Jian-zhong Jiang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4303507/jian-zhong-jiang-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

54 1,308 20 35 g-index

58 1,609 4.8 4.91 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
54	CO2-switchable oil-in-dispersion emulsions stabilized by tertiary amine surfactant and alumina particles. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2022 , 641, 128541	5.1	1
53	Charge-Reversible Surfactant-Induced Transformation Between Oil-in-Dispersion Emulsions and Pickering Emulsions. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 11793-11798	16.4	13
52	Charge-Reversible Surfactant-Induced Transformation Between Oil-in-Dispersion Emulsions and Pickering Emulsions. <i>Angewandte Chemie</i> , 2021 , 133, 11899-11904	3.6	4
51	Behavior of Smart Surfactants in Stabilizing pH-Responsive Emulsions. <i>Angewandte Chemie</i> , 2021 , 133, 5295-5299	3.6	О
50	Behavior of Smart Surfactants in Stabilizing pH-Responsive Emulsions. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 5235-5239	16.4	9
49	Conversion of bile salts from inferior emulsifier to efficient smart emulsifier assisted by negatively charged nanoparticles at low concentrations. <i>Chemical Science</i> , 2021 , 12, 11845-11850	9.4	4
48	pH-Responsive Behavior of Pickering Emulsions Stabilized by a Selenium-Containing Surfactant and Alumina Nanoparticles. <i>Langmuir</i> , 2021 , 37, 10683-10691	4	4
47	Redox-Responsive Oil-In-Dispersion Emulsions Stabilized by Similarly Charged Ferrocene Surfactants and Alumina Nanoparticles. <i>Langmuir</i> , 2020 , 36, 14589-14596	4	9
46	Transition between a Pickering Emulsion and an Oil-in-Dispersion Emulsion Costabilized by Alumina Nanoparticles and a Cationic Surfactant. <i>Langmuir</i> , 2020 , 36, 15543-15551	4	8
45	A redox-responsive organogel based on a selenium-containing low molecular mass gelator. <i>New Journal of Chemistry</i> , 2020 , 44, 24-28	3.6	5
44	Pickering emulsions of alumina nanoparticles and bola-type selenium surfactant yield a fully recyclable aqueous phase. <i>Green Chemistry</i> , 2020 , 22, 5470-5475	10	10
43	Palladium nanoparticles anchored on amphiphilic Janus-type cellulose nanocrystals for Pickering interfacial catalysis. <i>Chemical Communications</i> , 2020 , 56, 9396-9399	5.8	12
42	Redox-Responsive Pickering Emulsions Stabilized by Silica Nanoparticles and Ferrocene Surfactants at a Very Low Concentration. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 15904-15912	8.3	19
41	Biphasic biocatalysis using a CO2-switchable Pickering emulsion. <i>Green Chemistry</i> , 2019 , 21, 4062-4068	10	39
40	Structure and stabilization mechanism of diesel oil-in-water emulsions stabilized solely by either positively or negatively charged nanoparticles. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2019 , 573, 30-39	5.1	18
39	Amphiphilic cellulose supported PdNi alloy nanoparticles towards biofuel upgrade under mild conditions. <i>Catalysis Communications</i> , 2019 , 122, 43-46	3.2	6
38	pH and Redox Dual-Stimulated Wormlike Micelles Based on Cystamine and Conventional Anionic Surfactant. <i>Langmuir</i> , 2019 , 35, 15242-15248	4	4

(2017-2019)

37	Switchable Oil-in-Water Emulsions Stabilized by Like-Charged Surfactants and Particles at Very Low Concentrations. <i>Langmuir</i> , 2019 , 35, 4058-4067	4	27
36	A New Series of Double-Chain Single-Head Sulfobetaine Surfactants Derived from 1,3-Dialkyl Glyceryl Ether for Reducing Crude Oil/Water Interfacial Tension. <i>Journal of Surfactants and Detergents</i> , 2019 , 22, 47-60	1.9	13
35	Novel Oil-in-Water Emulsions Stabilised by Ionic Surfactant and Similarly Charged Nanoparticles at Very Low Concentrations. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 7738-7742	16.4	47
34	Dual stimuli-responsive wormlike micelles base on cationic azobenzene surfactant and sodium azophenol. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2018 , 543, 155-162	5.1	13
33	Light and CO/N dual stimuli-responsive wormlike micelles based on a zwitterionic surfactant and an azobenzene surfactant. <i>Soft Matter</i> , 2018 , 14, 773-779	3.6	16
32	Novel Oil-in-Water Emulsions Stabilised by Ionic Surfactant and Similarly Charged Nanoparticles at Very Low Concentrations. <i>Angewandte Chemie</i> , 2018 , 130, 7864-7868	3.6	23
31	Improving performances of double-chain single-head surfactants for SP flooding by combining with conventional anionic surfactants. <i>Journal of Dispersion Science and Technology</i> , 2018 , 39, 130-137	1.5	8
30	Synthesis of a new sulfobetaine surfactant with double long alkyl chains and its performances in surfactant-polymer flooding. <i>Journal of Dispersion Science and Technology</i> , 2018 , 39, 1185-1191	1.5	6
29	Surface and interfacial properties of 1,3-dialkyl glyceryl ether hydroxypropyl sulfonates as surfactants for enhanced oil recovery. <i>Journal of Dispersion Science and Technology</i> , 2018 , 39, 1335-134	3 ^{1.5}	8
28	Merging visible-light photoredox and micellar catalysis: arylation reactions with anilines nitrosated in situ. <i>Catalysis Science and Technology</i> , 2018 , 8, 3728-3732	5.5	29
27	Smart worm-like micelles responsive to CO/N and light dual stimuli. <i>Soft Matter</i> , 2017 , 13, 2727-2732	3.6	20
26	pH-Responsive Pickering Emulsions Stabilized by Silica Nanoparticles in Combination with a Conventional Zwitterionic Surfactant. <i>Langmuir</i> , 2017 , 33, 2296-2305	4	102
25	CO2/N2 triggered switchable Pickering emulsions stabilized by alumina nanoparticles in combination with a conventional anionic surfactant. <i>RSC Advances</i> , 2017 , 7, 29742-29751	3.7	30
24	Thermoresponsive Pickering Emulsions Stabilized by Silica Nanoparticles in Combination with Alkyl Polyoxyethylene Ether Nonionic Surfactant. <i>Langmuir</i> , 2017 , 33, 5724-5733	4	61
23	New Series of Double-Chain Single-Head Nonionic Surfactants: 1,3-Dialkyl Glyceryl Ether Ethoxylates for Surfactant Polymer Flooding. <i>Energy & Energy & Ener</i>	4.1	19
22	Photoresponsive Foams Generated by a Rigid Surfactant Derived from Dehydroabietic Acid. <i>Langmuir</i> , 2017 , 33, 7908-7916	4	44
21	Performances of Guerbet Alcohol Ethoxylates for Surfactant Polymer Flooding Free of Alkali. <i>Energy & Dolorowski</i> 2017, 31, 9319-9327	4.1	18
20	Facile synthesis of mesoporous silica by CO2/N2 switchable templates using a convenient compound. <i>RSC Advances</i> , 2017 , 7, 25066-25069	3.7	

19	Smart foams based on dual stimuli-responsive surfactant. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2017 , 513, 287-291	5.1	20
18	Inhibiting hydrophobization of sandstones via adsorption of alkyl carboxyl betaines in SP flooding by using gentle alkali. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2017 , 535, 75-8.	2 ^{5.1}	6
17	Responsive, switchable wormlike micelles for CO/N and redox dual stimuli based on selenium-containing surfactants. <i>Soft Matter</i> , 2017 , 13, 6458-6464	3.6	26
16	Pickering Emulsions Responsive to CO2/N2 and Light Dual Stimuli at Ambient Temperature. <i>Langmuir</i> , 2016 , 32, 8668-75	4	66
15	Dioctyl Glyceryl Ether Ethoxylates as Surfactants for Surfactant P olymer Flooding. <i>Energy & Energy &</i>	4.1	17
14	A New Type of Sulfobetaine Surfactant with Double Alkyl Polyoxyethylene Ether Chains for Enhanced Oil Recovery. <i>Journal of Surfactants and Detergents</i> , 2016 , 19, 967-977	1.9	29
13	Switchable Pickering emulsions stabilized by silica nanoparticles hydrophobized in situ with a conventional cationic surfactant. <i>Langmuir</i> , 2015 , 31, 3301-7	4	97
12	Morphology and size control of calcium carbonate crystallized in a reverse micelle system with switchable surfactants. <i>RSC Advances</i> , 2015 , 5, 80216-80219	3.7	8
11	Responsive Aqueous Foams Stabilized by Silica Nanoparticles Hydrophobized in Situ with a Conventional Surfactant. <i>Langmuir</i> , 2015 , 31, 12937-43	4	47
10	Regioselective Nitration of Phenols in O/W Microemulsion by NaNO3 and Dilute Sulfuric Acid. <i>Journal of Dispersion Science and Technology</i> , 2014 , 35, 524-527	1.5	4
9	Responsive aqueous foams stabilised by silica nanoparticles hydrophobised in situ with a switchable surfactant. <i>Soft Matter</i> , 2014 , 10, 9739-45	3.6	49
8	Synthesis of CdS nanoparticles in switchable surfactant reverse micelles. <i>Chemical Communications</i> , 2013 , 49, 1912-4	5.8	22
7	Heterogeneous Cyanation Reaction of Aryl Halides Catalyzed by a Reusable Palladium Schiff Base Complex in Water. <i>Catalysis Letters</i> , 2013 , 143, 1195-1199	2.8	12
6	Switchable pickering emulsions stabilized by silica nanoparticles hydrophobized in situ with a switchable surfactant. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 12373-6	16.4	130
5	Switchable Pickering Emulsions Stabilized by Silica Nanoparticles Hydrophobized In Situ with a Switchable Surfactant. <i>Angewandte Chemie</i> , 2013 , 125, 12599-12602	3.6	51
4	Synthesis of Didodecylmethylcarboxyl Betaine and Its Application in Surfactant B olymer Flooding. Journal of Surfactants and Detergents, 2012 , 15, 685	1.9	44
3	Synthesis of N-(3-Oxapropanoxyl)dodecanamide and its Application in Surfactant-Polymer Flooding. <i>Journal of Surfactants and Detergents</i> , 2011 , 14, 317-324	1.9	26
2	Regioselective Nitration of Phenols by NaNO3 in Microemulsion. <i>Journal of Dispersion Science and Technology</i> , 2010 , 32, 125-127	1.5	2

Redox and pH dual-stimuli responsive wormlike micelles based on CTAB and sodium dithiodibenzoate. *Journal of Dispersion Science and Technology*,1-9

1.5