
N Christina Hsu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4303115/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Collection 6 MODIS aerosol products over land and ocean. Atmospheric Measurement Techniques, 2013, 6, 2989-3034.	1.2	1,612
2	Globalâ€scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Reviews of Geophysics, 2012, 50, .	9.0	1,041
3	Global Estimates of Fine Particulate Matter using a Combined Geophysical-Statistical Method with Information from Satellites, Models, and Monitors. Environmental Science & Technology, 2016, 50, 3762-3772.	4.6	871
4	Enhanced Deep Blue aerosol retrieval algorithm: The second generation. Journal of Geophysical Research D: Atmospheres, 2013, 118, 9296-9315.	1.2	803
5	MODIS Collection 6 aerosol products: Comparison between Aqua's eâ€Deep Blue, Dark Target, and "merged―data sets, and usage recommendations. Journal of Geophysical Research D: Atmospheres, 2014, 119, 13,965.	1.2	478
6	Validation and uncertainty estimates for MODIS Collection 6 "Deep Blue―aerosol data. Journal of Geophysical Research D: Atmospheres, 2013, 118, 7864-7872.	1.2	445
7	Global Estimates and Long-Term Trends of Fine Particulate Matter Concentrations (1998–2018). Environmental Science & Technology, 2020, 54, 7879-7890.	4.6	431
8	Global and regional trends of aerosol optical depth over land and ocean using SeaWiFS measurements from 1997 to 2010. Atmospheric Chemistry and Physics, 2012, 12, 8037-8053.	1.9	319
9	Comparisons of the TOMS aerosol index with Sun-photometer aerosol optical thickness: Results and applications. Journal of Geophysical Research, 1999, 104, 6269-6279.	3.3	272
10	Multi-decadal aerosol variations from 1980 to 2009: a perspective from observations and a global model. Atmospheric Chemistry and Physics, 2014, 14, 3657-3690.	1.9	240
11	Accumulation of aerosols over the Indo-Gangetic plains and southern slopes of the Himalayas: distribution, properties and radiative effects during the 2009 pre-monsoon season. Atmospheric Chemistry and Physics, 2011, 11, 12841-12863.	1.9	232
12	Characterization of the optical properties of biomass burning aerosols in Zambia during the 1997 ZIBBEE field campaign. Journal of Geophysical Research, 2001, 106, 3425-3448.	3.3	207
13	Validation, Stability, and Consistency of MODIS Collection 6.1 and VIIRS Version 1 Deep Blue Aerosol Data Over Land. Journal of Geophysical Research D: Atmospheres, 2019, 124, 4658-4688.	1.2	140
14	Identification of anthropogenic and natural dust sources using Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue level 2 data. Journal of Geophysical Research, 2010, 115, .	3.3	128
15	VIIRS Deep Blue Aerosol Products Over Land: Extending the EOS Longâ€Term Aerosol Data Records. Journal of Geophysical Research D: Atmospheres, 2019, 124, 4026-4053.	1.2	128
16	Global and regional evaluation of over-land spectral aerosol optical depth retrievals from SeaWiFS. Atmospheric Measurement Techniques, 2012, 5, 1761-1778.	1.2	115
17	SeaWiFS Ocean Aerosol Retrieval (SOAR): Algorithm, validation, and comparison with other data sets. Journal of Geophysical Research, 2012, 117, .	3.3	108
18	Effect of MODIS Terra radiometric calibration improvements on Collection 6 Deep Blue aerosol products: Validation and Terra/Aqua consistency. Journal of Geophysical Research D: Atmospheres, 2015, 120, 12,157.	1.2	99

N CHRISTINA HSU

#	Article	IF	CITATIONS
19	Merging regional and global aerosol optical depth records from major available satellite products. Atmospheric Chemistry and Physics, 2020, 20, 2031-2056.	1.9	98
20	Validation of GRASP algorithm product from POLDER/PARASOL data and assessment of multi-angular polarimetry potential for aerosol monitoring. Earth System Science Data, 2020, 12, 3573-3620.	3.7	90
21	Characterization of aerosols over the Indochina peninsula from satellite-surface observations during biomass burning pre-monsoon season. Atmospheric Environment, 2013, 78, 51-59.	1.9	88
22	A pure marine aerosol model, for use in remote sensing applications. Journal of Geophysical Research, 2012, 117, .	3.3	77
23	AERONET-based models of smoke-dominated aerosol near source regions and transported over oceans, and implications for satellite retrievals of aerosol optical depth. Atmospheric Chemistry and Physics, 2014, 14, 11493-11523.	1.9	75
24	Satellite Ocean Aerosol Retrieval (SOAR) Algorithm Extension to Sâ€NPP VIIRS as Part of the "Deep Blue― Aerosol Project. Journal of Geophysical Research D: Atmospheres, 2018, 123, 380-400.	1.2	72
25	Retrieving nearâ€global aerosol loading over land and ocean from AVHRR. Journal of Geophysical Research D: Atmospheres, 2017, 122, 9968-9989.	1.2	71
26	Susceptibility of aerosol optical thickness retrievals to thin cirrus contamination during the BASE-ASIA campaign. Journal of Geophysical Research, 2011, 116, .	3.3	61
27	Effects of COVID-19 lockdowns on fine particulate matter concentrations. Science Advances, 2021, 7, .	4.7	53
28	Improvement of aerosol optical depth retrieval from MODIS spectral reflectance over the global ocean using new aerosol models archived from AERONET inversion data and tri-axial ellipsoidal dust database. Atmospheric Chemistry and Physics, 2012, 12, 7087-7102.	1.9	51
29	Extending "Deep Blue―aerosol retrieval coverage to cases of absorbing aerosols above clouds: Sensitivity analysis and first case studies. Journal of Geophysical Research D: Atmospheres, 2016, 121, 4830-4854.	1.2	49
30	Observations of the Interaction and Transport of Fine Mode Aerosols With Cloud and/or Fog in Northeast Asia From Aerosol Robotic Network and Satellite Remote Sensing. Journal of Geophysical Research D: Atmospheres, 2018, 123, 5560-5587.	1.2	49
31	Retrievals of aerosol singleâ€scattering albedo and effective aerosol layer height for biomassâ€burning smoke: Synergy derived from "Aâ€Train―sensors. Geophysical Research Letters, 2008, 35, .	1.5	48
32	AERONET Remotely Sensed Measurements and Retrievals of Biomass Burning Aerosol Optical Properties During the 2015 Indonesian Burning Season. Journal of Geophysical Research D: Atmospheres, 2019, 124, 4722-4740.	1.2	40
33	Evaluation of NASA Deep Blue/SOAR aerosol retrieval algorithms applied to AVHRR measurements. Journal of Geophysical Research D: Atmospheres, 2017, 122, 9945-9967.	1.2	39
34	Validation of SOAR VIIRS Overâ€Water Aerosol Retrievals and Context Within the Global Satellite Aerosol Data Record. Journal of Geophysical Research D: Atmospheres, 2018, 123, 13,496.	1.2	34
35	AERONETâ€Based Nonspherical Dust Optical Models and Effects on the VIIRS Deep Blue/SOAR Over Water Aerosol Product. Journal of Geophysical Research D: Atmospheres, 2017, 122, 10384-10401.	1.2	33
36	Estimating marine aerosol particle volume and number from Maritime Aerosol Network data. Atmospheric Chemistry and Physics, 2012, 12, 8889-8909.	1.9	29

N CHRISTINA HSU

#	Article	IF	CITATIONS
37	Satellite observation of pollutant emissions from gas flaring activities near the Arctic. Atmospheric Environment, 2016, 133, 1-11.	1.9	29
38	Cross-calibration of S-NPP VIIRS moderate-resolution reflective solar bands against MODIS Aqua over dark water scenes. Atmospheric Measurement Techniques, 2017, 10, 1425-1444.	1.2	29
39	Retrieving the height of smoke and dust aerosols by synergistic use of VIIRS, OMPS, and CALIOP observations. Journal of Geophysical Research D: Atmospheres, 2015, 120, 8372-8388.	1.2	27
40	Retrieving the global distribution of the threshold of wind erosion from satellite data and implementing it into the Geophysical Fluid Dynamics Laboratory land–atmosphere model (GFDL) Tj ETQq0 0 0	rg B ⊅/Ove	rloæ 10 Tf 50
41	Impacts of Cross-Platform Vicarious Calibration on the Deep Blue Aerosol Retrievals for Moderate Resolution Imaging Spectroradiometer Aboard Terra. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49, 4877-4888.	2.7	21
42	Implications of MODIS bow-tie distortion on aerosol optical depth retrievals, and techniques for mitigation. Atmospheric Measurement Techniques, 2015, 8, 5277-5288.	1.2	21
43	Two decades observing smoke above clouds in the south-eastern Atlantic Ocean: Deep Blue algorithm updates and validation with ORACLES field campaign data. Atmospheric Measurement Techniques, 2019, 12, 3595-3627.	1.2	15
44	Evaluating the Height of Biomass Burning Smoke Aerosols Retrieved from Synergistic Use of Multiple Satellite Sensors over Southeast Asia. Aerosol and Air Quality Research, 2016, 16, 2831-2842.	0.9	13
45	Retrieval of aerosol optical depth under thin cirrus from MODIS: Application to an ocean algorithm. Journal of Geophysical Research D: Atmospheres, 2013, 118, 10,111.	1.2	12
46	Aerosol Layer Height With Enhanced Spectral Coverage Achieved by Synergy Between VIIRS and OMPS-NM Measurements. IEEE Geoscience and Remote Sensing Letters, 2021, 18, 949-953.	1.4	9
47	Use of spaceborne lidar for the evaluation of thin cirrus contamination and screening in the Aqua MODIS Collection 5 aerosol products. Journal of Geophysical Research D: Atmospheres, 2013, 118, 6444-6453.	1.2	7