
Carsten Saft

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4303052/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transcript-Specific Loss-of-Function Variants in <i>VPS16</i> Are Enriched in Patients With Dystonia. Neurology: Genetics, 2022, 8, e644.	0.9	9
2	No optical coherence tomography changes in premanifest Huntington's disease mutation carriers far from disease onset. Brain and Behavior, 2022, 12, e2592.	1.0	5
3	Divergent Effects of the Nonselective Adenosine Receptor Antagonist Caffeine in Pre-Manifest and Motor-Manifest Huntington's Disease. Biomedicines, 2022, 10, 1258.	1.4	1
4	Resurrection of sildenafil: potential for Huntington's Disease, too?. Journal of Neurology, 2022, 269, 5144-5150.	1.8	1
5	Altered thirdâ€party punishment in Huntington's disease: A study using neuroeconomic games. Brain and Behavior, 2021, 11, e01908.	1.0	9
6	Correspondence on "Clinical, neuropathological, and genetic characterization of STUB1 variants in cerebellar ataxias: a frequent cause of predominant cognitive impairment―by Roux et al Genetics in Medicine, 2021, 23, 1171-1172.	1.1	2
7	Association of CAG Repeat Length in the Huntington Gene With Cognitive Performance in Young Adults. Neurology, 2021, 96, e2407-e2413.	1.5	12
8	Longitudinal Evaluation of the Effect of Tricyclic Antidepressants and Neuroleptics on the Course of Huntington's Disease—Data from a Real World Cohort. Brain Sciences, 2021, 11, 413.	1.1	10
9	Teaching Video Neurolmages: New STUB1 Variant Causes Chorea, Tremor, Dystonia, Myoclonus, Ataxia, Depression, Cognitive Impairment, Epilepsy, and Superficial Siderosis. Neurology, 2021, 97, 10.1212/WNL.000000000012264.	1.5	4
10	Differential Diagnosis of Chorea—HIV Infection Delays Diagnosis of Huntington's Disease by Years. Brain Sciences, 2021, 11, 710.	1.1	4
11	Tit for Tat: Costly Punishment in Manifest Huntington's Disease. Neurodegenerative Diseases, 2021, 21, 74-78.	0.8	1
12	Another Perspective on Huntington's Disease: Disease Burden in Family Members and Pre-Manifest HD When Compared to Genotype-Negative Participants from ENROLL-HD. Brain Sciences, 2021, 11, 1621.	1.1	10
13	Emergence of Bruxism after Reducing Left Pallidal Stimulation in a Patient with Huntington's Disease. Movement Disorders Clinical Practice, 2020, 7, 704-705.	0.8	3
14	Time will tell: Decision making in premanifest and manifest Huntington's disease. Brain and Behavior, 2020, 10, e01843.	1.0	9
15	Patterns of CAG repeat instability in the central nervous system and periphery in Huntington's disease and in spinocerebellar ataxia type 1. Human Molecular Genetics, 2020, 29, 2551-2567.	1.4	69
16	Functional and cognitive capacity differ in dystonic motor subtypes when compared to choreatic and hypokineticâ€rigid motor subtypes in Huntington's disease. Brain and Behavior, 2020, 10, e01704.	1.0	8
17	Clinical Manifestation of Juvenile and Pediatric HD Patients: A Retrospective Case Series. Brain Sciences, 2020, 10, 340.	1.1	19
18	Antiepileptic effects of cobalt, manganese and magnesium on bicuculline-induced epileptiform activity in hippocampal neurons. Brain Research, 2020, 1732, 146684.	1.1	2

CARSTEN SAFT

#	Article	IF	CITATIONS
19	Obsessive-Compulsive Symptoms are Less Common in Huntington's Disease than Reported Earlier. Journal of Huntington's Disease, 2019, 8, 493-500.	0.9	3
20	A protein quality control pathway regulated by linear ubiquitination. EMBO Journal, 2019, 38, .	3.5	63
21	Defining pediatric huntington disease: Time to abandon the term <i>Juvenile Huntington Disease</i> ?. Movement Disorders, 2019, 34, 584-585.	2.2	16
22	Objective assessment of gait and posture in premanifest and manifest Huntington disease — A multi-center study. Gait and Posture, 2018, 62, 451-457.	0.6	18
23	Activation of NPY-Y2 receptors ameliorates disease pathology in the R6/2 mouse and PC12 cell models of Huntington's disease. Experimental Neurology, 2018, 302, 112-128.	2.0	20
24	Pallidal deep brain stimulation in juvenile Huntington's disease: local field potential oscillations and clinical data. Journal of Neurology, 2018, 265, 1573-1579.	1.8	11
25	Cannabinoids for Treatment of Dystonia in Huntington's Disease. Journal of Huntington's Disease, 2018, 7, 167-173.	0.9	33
26	Does arterial hypertension influence the onset of Huntington's disease?. PLoS ONE, 2018, 13, e0197975.	1.1	6
27	J01â€Effects of IONIS-HTTRX (RG6042) in patients with early huntington's disease, results of the first htt-lowering drug trial. , 2018, , .		2
28	P 329. Patients with Juvenile Huntington's Disease Benefit from Early Diagnosis. Neuropediatrics, 2018, 49, .	0.3	0
29	Progressive spinal cord atrophy in manifest and premanifest Huntington's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 614-616.	0.9	5
30	Identifying modifiers of Huntington's disease progression. Lancet Neurology, The, 2017, 16, 679-680.	4.9	0
31	Laquinimod treatment in the R6/2 mouse model. Scientific Reports, 2017, 7, 4947.	1.6	36
32	L22â€Intranasal application of NPY and NPY13–36 ameliorate disease pathology in R6/2 mouse model of huntington's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A97.2-A98.	0.9	1
33	Two different phenomena in basic motor speech performance in premanifest Huntington disease. Neurology, 2016, 87, 2283-2283.	1.5	1
34	Expression of brain-derived neurotrophic factor in astrocytes - Beneficial effects of glatiramer acetate in the R6/2 and YAC128 mouse models of Huntington's disease. Experimental Neurology, 2016, 285, 12-23.	2.0	28
35	L7â€Laquinimod in the R6/2 mouse model of huntington's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A92.2-A92.	0.9	0
36	E2â€Progression of motor subtypes in huntington's disease: a six-year follow-up study. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A45.2-A45.	0.9	0

CARSTEN SAFT

#	Article	IF	CITATIONS
37	Two different phenomena in basic motor speech performance in premanifest Huntington disease. Neurology, 2016, 86, 1329-1335.	1.5	23
38	A Prospective Pilot Trial for Pallidal Deep Brain Stimulation in Huntington's Disease. Frontiers in Neurology, 2015, 6, 177.	1.1	47
39	Echogenicity of basal ganglia structures in different Huntington's disease phenotypes. Journal of Neural Transmission, 2015, 122, 825-833.	1.4	7
40	Treating the whole body in Huntington's disease. Lancet Neurology, The, 2015, 14, 1135-1142.	4.9	126
41	Exploring Genetic Factors Involved in Huntington Disease Age of Onset: E2F2 as a New Potential Modifier Gene. PLoS ONE, 2015, 10, e0131573.	1.1	11
42	High noon back pain- severe pseudoradicular pain as a lead symptom of superficial siderosis: a case report. Therapeutic Advances in Neurological Disorders, 2014, 7, 276-278.	1.5	1
43	Progressive hepatic mitochondrial dysfunction in premanifest Huntington's disease. Movement Disorders, 2014, 29, 831-834.	2.2	27
44	Cross sectional PET study of cerebral adenosine A1 receptors in premanifest and manifest Huntington's disease. European Journal of Nuclear Medicine and Molecular Imaging, 2014, 41, 1210-1220.	3.3	34
45	Clinical utility gene card for: Huntington's disease. European Journal of Human Genetics, 2014, 22, 713-713.	1.4	4
46	What is the course of Huntington's disease?. Lancet Neurology, The, 2014, 13, 1165-1166.	4.9	4
47	Impaired motor speech performance in Huntington's disease. Journal of Neural Transmission, 2014, 121, 399-407.	1.4	48
48	Benign hereditary chorea as an experimental model to investigate the role of medium spiny neurons for response adaptation. Neuropsychologia, 2014, 59, 124-129.	0.7	5
49	Neuroprotective dimethyl fumarate synergizes with immunomodulatory interferon beta to provide enhanced axon protection in autoimmune neuroinflammation. Experimental Neurology, 2014, 257, 50-56.	2.0	25
50	Mentalizing in preclinical Huntington's disease: an fMRI study using cartoon picture stories. Brain Imaging and Behavior, 2013, 7, 154-162.	1.1	16
51	Oral and dental health in Huntingtonâ€~s disease - an observational study. BMC Neurology, 2013, 13, 114.	0.8	11
52	Hepatic mitochondrial dysfunction in manifest and premanifest Huntington disease. Neurology, 2013, 80, 743-746.	1.5	52
53	Better global and cognitive functioning in choreatic versus hypokineticâ€rigid Huntington's disease. Movement Disorders, 2013, 28, 1142-1145.	2.2	29
54	Diadochokinetic movements differ between patients with Huntington's disease and controls. NeuroRehabilitation, 2013, 33, 649-655.	0.5	3

CARSTEN SAFT

#	Article	IF	CITATIONS
55	Depression in patients with Huntington disease correlates with alterations of the brain stem raphe depicted by transcranial sonography. Journal of Psychiatry and Neuroscience, 2011, 36, 187-194.	1.4	51
56	Post pump chorea in a 77-year-old male. Neurological Sciences, 2011, 32, 699-701.	0.9	10
57	Hepatic mitochondrial dysfunction in Friedreich Ataxia. BMC Neurology, 2011, 11, 145.	0.8	15
58	PGC-1alpha downstream transcription factors NRF-1 and TFAM are genetic modifiers of Huntington disease. Molecular Neurodegeneration, 2011, 6, 32.	4.4	106
59	No evidence of impaired gastric emptying in early Huntingtonâ€~̃s Disease. PLOS Currents, 2011, 3, RRN1284.	1.4	4
60	Mitochondrial haplogroup H correlates with ATP levels and age at onset in Huntington disease. Journal of Molecular Medicine, 2010, 88, 431-436.	1.7	56
61	Upper gastrointestinal findings in Huntington's disease: patients suffer but do not complain. Journal of Neural Transmission, 2009, 116, 1607-1611.	1.4	58
62	Huntington's disease as caused by 34 CAG repeats. Movement Disorders, 2008, 23, 879-881.	2.2	46
63	fMRI reveals altered auditory processing in manifest and premanifest Huntington's disease. Neuropsychologia, 2008, 46, 1279-1289.	0.7	64
64	Functional Connectivity During Auditory Processing in Huntington's Disease. Journal of Psychophysiology, 2008, 22, 195-201.	0.3	0
65	Time Processing in Huntington's Disease: A Group-Control Study. PLoS ONE, 2007, 2, e1263.	1.1	65
66	NR2A and NR2B receptor gene variations modify age at onset in Huntington disease in a sex-specific manner. Human Genetics, 2007, 122, 175-182.	1.8	64
67	Dose-dependent improvement of myoclonic hyperkinesia due to Valproic acid in eight Huntington's Disease patients: a case series. BMC Neurology, 2006, 6, 11.	0.8	55
68	Assessment of simple movements reflects impairment in Huntington's disease. Movement Disorders, 2006, 21, 1208-1212.	2.2	33
69	Mitochondrial impairment in patients and asymptomatic mutation carriers of Huntington's disease. Movement Disorders, 2005, 20, 674-679.	2.2	162
70	Supracubital perineurioma misdiagnosed as carpal tunnel syndrome: case report. BMC Neurology, 2004, 4, 19.	0.8	4
71	Assessment of complex movements reflects dysfunction in Huntington?s disease. Journal of Neurology, 2003, 250, 1469-1474.	1.8	29