Martin Patel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4302988/publications.pdf Version: 2024-02-01

		26610	27389
203	13,268	56	106
papers	citations	h-index	g-index
212	212	212	13843
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	ldentification of criteria for the selection of buildings with elevated energy saving potentials from hydraulic balancing-methodology and case study. Advances in Building Energy Research, 2022, 16, 427-444.	1.1	2
2	Decarbonization strategies for Switzerland considering embedded greenhouse gas emissions in electricity imports. Energy Policy, 2022, 162, 112794.	4.2	23
3	Shallow geothermal energy potential for heating and cooling of buildings with regeneration under climate change scenarios. Energy, 2022, 244, 123086.	4.5	30
4	Analysing utility-based direct load control programmes for heat pumps and electric vehicles considering customer segmentation. Energy Policy, 2022, 164, 112900.	4.2	8
5	Integration of prosumer peer-to-peer trading decisions into energy community modelling. Nature Energy, 2022, 7, 74-82.	19.8	50
6	Impact of energy efficiency and decarbonisation policies for buildings: A comparative assessment of Austria and Switzerland. Energy and Buildings, 2022, , 112175.	3.1	0
7	Large Air-to-Water Heat Pumps for Fuel-Boiler Substitution in Non-Retrofitted Multi-Family Buildings—Energy Performance, CO2 Savings, and Lessons Learned in Actual Conditions of Use. Energies, 2022, 15, 5033.	1.6	6
8	Optimal spatial resource allocation in networks: Application to district heating and cooling. Computers and Industrial Engineering, 2022, 171, 108448.	3.4	4
9	What adds more flexibility? An energy system analysis of storage, demand-side response, heating electrification, and distribution reinforcement. Renewable and Sustainable Energy Reviews, 2022, 167, 112696.	8.2	23
10	Decarbonising heat with optimal PV and storage investments: A detailed sector coupling modelling framework with flexible heat pump operation. Applied Energy, 2021, 282, 116110.	5.1	36
11	Using rewards and penalties to promote sustainability: Who chooses incentiveâ€based electricity products and why?. Journal of Consumer Behaviour, 2021, 20, 381-398.	2.6	9
12	A Monte Carlo building stock model of space cooling demand in the Swiss service sector under climate change. Energy and Buildings, 2021, 233, 110662.	3.1	17
13	Why We Continue to Need Energy Efficiency Programmes—A Critical Review Based on Experiences in Switzerland and Elsewhere. Energies, 2021, 14, 1742.	1.6	7
14	Physical design, techno-economic analysis and optimization of distributed compressed air energy storage for renewable energy integration. Journal of Energy Storage, 2021, 35, 102268.	3.9	25
15	Spatial analysis of distribution grid capacity and costs to enable massive deployment of PV, electric mobility and electric heating. Applied Energy, 2021, 287, 116504.	5.1	71
16	Potential and costs of decentralized heat pumps and thermal networks in Swiss residential areas. International Journal of Energy Research, 2021, 45, 15245-15264.	2.2	3
17	Optimal building retrofit pathways considering stock dynamics and climate change impacts. Energy Policy, 2021, 152, 112220.	4.2	29
18	Decarbonizing heat with PV-coupled heat pumps supported by electricity and heat storage: Impacts and trade-offs for prosumers and the grid. Energy Conversion and Management, 2021, 240, 114220.	4.4	22

#	Article	IF	CITATIONS
19	How to Improve Effectiveness of Renewable Space Heating Programs by Better Understanding Homeowner—Installer Interactions. Energies, 2021, 14, 4625.	1.6	2
20	Pay now, save later: Using insights from behavioural economics to commit consumers to environmental sustainability. Journal of Environmental Psychology, 2021, 76, 101625.	2.3	3
21	Linking energy efficiency indicators with policy evaluation – A combined top-down and bottom-up analysis of space heating consumption in residential buildings. Energy and Buildings, 2021, 244, 110987.	3.1	12
22	In search of optimal consumption: A review of causes and solutions to the Energy Performance Gap in residential buildings. Energy and Buildings, 2021, 249, 111253.	3.1	46
23	Geospatial global sensitivity analysis of a heat energy service decarbonisation model of the building stock. Applied Energy, 2021, 302, 117592.	5.1	5
24	Using energy saving deficit distributions to assess calculated, deemed and metered electricity savings estimations. Applied Energy, 2021, 304, 117721.	5.1	3
25	Novel integrated agricultural land management approach provides sustainable biomass feedstocks for bioplastics and supports the UK's †net-zero' target. Environmental Research Letters, 2021, 16, 014023.	2.2	9
26	The Energy Performance Gap in Swiss residential buildings: a roadmap for improvement. Journal of Physics: Conference Series, 2021, 2042, 012143.	0.3	0
27	Presentation of new geospatial datasets for renewable thermal energy systems modelling in Switzerland. Journal of Physics: Conference Series, 2021, 2042, 012003.	0.3	1
28	An optimisation approach for spatial allocation of energy sources to district heating networks. Journal of Physics: Conference Series, 2021, 2042, 012038.	0.3	0
29	Does bulk electricity storage assist wind and solar in replacing dispatchable power production?. Energy Economics, 2020, 85, 104495.	5.6	11
30	Estimation of energy savings potential through hydraulic balancing of heating systems in buildings. Journal of Building Engineering, 2020, 28, 101030.	1.6	6
31	Spatiotemporal analysis of industrial excess heat supply for district heat networks in Switzerland. Energy, 2020, 192, 116705.	4.5	15
32	Levelized cost of solar photovoltaics and wind supported by storage technologies to supply firm electricity. Journal of Energy Storage, 2020, 27, 101027.	3.9	41
33	Measuring the thermal energy performance gap of labelled residential buildings in Switzerland. Energy Policy, 2020, 137, 111085.	4.2	57
34	A detailed review on current status of energy efficiency improvement in the Swiss industry sector. Energy Policy, 2020, 137, 111162.	4.2	15
35	Heat integration of a multi-product batch process by means of direct and indirect heat recovery using thermal energy storage. Applied Thermal Engineering, 2020, 167, 114796.	3.0	9
36	Simulation and comparative assessment of heating systems with tank thermal energy storage – A Swiss case study. Journal of Energy Storage, 2020, 32, 101810.	3.9	12

#	Article	IF	CITATIONS
37	Assessment of techno-economic feasibility of centralised seasonal thermal energy storage for decarbonising the Swiss residential heating sector. Renewable Energy, 2020, 161, 1209-1225.	4.3	14
38	How Does the Electricity Demand Profile Impact the Attractiveness of PV-Coupled Battery Systems Combining Applications?. Energies, 2020, 13, 4038.	1.6	11
39	Economic and Environmental Assessment of Catalytic and Thermal Pyrolysis Routes for Fuel Production from Lignocellulosic Biomass. Processes, 2020, 8, 1612.	1.3	2
40	Estimation of load curves for large-scale district heating networks. IOP Conference Series: Earth and Environmental Science, 2020, 588, 052032.	0.2	0
41	Analysis of energy efficiency improvement and carbon dioxide abatement potentials for Swiss Food and Beverage sector. Resources, Conservation and Recycling, 2020, 161, 104967.	5.3	10
42	Do energy performance certificates allow reliable predictions of actual energy consumption and savings? Learning from the Swiss national database. Energy and Buildings, 2020, 224, 110235.	3.1	50
43	Impact of prosumer battery operation on the cost of power supply. Journal of Energy Storage, 2020, 29, 101323.	3.9	7
44	Carbon tax and energy programs for buildings: Rivals or allies?. Energy Policy, 2020, 139, 111218.	4.2	21
45	Cost-effectiveness of large-scale deep energy retrofit packages for residential buildings under different economic assessment approaches. Energy and Buildings, 2020, 215, 109870.	3.1	51
46	A comprehensive indicator set for measuring multiple benefits of energy efficiency. Energy Policy, 2020, 139, 111284.	4.2	44
47	Stock modelling and cost-effectiveness analysis of energy-efficient household electronic appliances in Switzerland. Energy Efficiency, 2020, 13, 571-596.	1.3	8
48	Energy Performance Certificate for buildings as a strategy for the energy transition: Stakeholder insights on shortcomings. IOP Conference Series: Earth and Environmental Science, 2020, 588, 022003.	0.2	5
49	Who is sensitive to DSM? Understanding the determinants of the shape of electricity load curves and demand shifting: Socio-demographic characteristics, appliance use and attitudes. Energy Policy, 2019, 133, 110909.	4.2	37
50	Evaluating the electricity saving potential of electrochromic glazing for cooling and lighting at the scale of the Swiss non-residential national building stock using a Monte Carlo model. Energy, 2019, 185, 136-147.	4.5	34
51	Comparing electricity consumption trends: A multilevel index decomposition analysis of the Genevan and Swiss economy. Energy Economics, 2019, 83, 1-25.	5.6	9
52	Comparative analysis of customer-funded energy efficiency programs in the United States and Switzerland–Cost-effectiveness and discussion of operational practices. Energy Policy, 2019, 135, 111010.	4.2	14
53	Analysis of the impact of energy efficiency labelling and potential changes on electricity demand reduction of white goods using a stock model: The case of Switzerland. Applied Energy, 2019, 239, 117-132.	5.1	16
54	Applying ex post index decomposition analysis to final energy consumption for evaluating European energy efficiency policies and targets. Energy Efficiency, 2019, 12, 1329-1357.	1.3	44

#	Article	IF	CITATIONS
55	Comparison of clustering approaches for domestic electricity load profile characterisation - Implications for demand side management. Energy, 2019, 180, 665-677.	4.5	113
56	Optimized PV-coupled battery systems for combining applications: Impact of battery technology and geography. Renewable and Sustainable Energy Reviews, 2019, 112, 978-990.	8.2	58
57	A bottom-up analysis of energy efficiency improvement and CO2 emission reduction potentials for the swiss metals sector. Energy, 2019, 181, 173-186.	4.5	22
58	Disaggregation of energy storage operation by timescales. Journal of Energy Storage, 2019, 23, 480-494.	3.9	7
59	Mapping district heating potential under evolving thermal demand scenarios and technologies: A case study for Switzerland. Energy, 2019, 176, 682-692.	4.5	43
60	The nature of combining energy storage applications for residential battery technology. Applied Energy, 2019, 239, 1343-1355.	5.1	38
61	Combined geospatial and techno-economic analysis of deep building envelope retrofit. Journal of Physics: Conference Series, 2019, 1343, 012028.	0.3	3
62	Applications of graph theory in district heat network analysis at national scale. Journal of Physics: Conference Series, 2019, 1343, 012045.	0.3	3
63	Strategies for decarbonising the Swiss heating system. Energy, 2019, 169, 1119-1131.	4.5	26
64	Costâ€effectiveness analysis of energy efficiency measures in the Swiss chemical and pharmaceutical industry. International Journal of Energy Research, 2019, 43, 313-336.	2.2	10
65	An assessment of the impacts of renewable and conventional electricity supply on the cost and value of power-to-gas. International Journal of Hydrogen Energy, 2019, 44, 9577-9593.	3.8	23
66	Assessing availability and greenhouse gas emissions of lignocellulosic biomass feedstock supply – case study for a catchment in England. Biofuels, Bioproducts and Biorefining, 2019, 13, 568-581.	1.9	10
67	Analysis of space heating demand in the Swiss residential building stock: Element-based bottom-up model of archetype buildings. Energy and Buildings, 2019, 184, 300-322.	3.1	77
68	A review on the role, cost and value of hydrogen energy systems for deep decarbonisation. Renewable and Sustainable Energy Reviews, 2019, 101, 279-294.	8.2	378
69	Naphtha storage fraction and green house gas emissions in the Korean petrochemical industry. Energy and Environment, 2018, 29, 919-937.	2.7	2
70	Recent experiences with tariffs for saving electricity in households. Energy Policy, 2018, 115, 514-522.	4.2	23
71	Secondâ€generation bioâ€based plastics are becoming a reality – Nonâ€renewable energy and greenhouse gas (CHC) balance of succinic acidâ€based plastic end products made from lignocellulosic biomass. Biofuels, Bioproducts and Biorefining, 2018, 12, 426-441.	1.9	47
72	Feel good, stay green: Positive affect promotes pro-environmental behaviors and mitigates compensatory "mental bookkeeping―effects. Journal of Environmental Psychology, 2018, 56, 3-11.	2.3	57

#	Article	IF	CITATIONS
73	Function-driven Investigation of Non-renewable Energy Use and Greenhouse Gas Emissions for Material Selection in Food Packaging Applications: Case Study of Yoghurt Packaging. Procedia CIRP, 2018, 69, 728-733.	1.0	8
74	Techno-economic analysis of battery storage and curtailment in a distribution grid with high PV penetration. Journal of Energy Storage, 2018, 17, 73-83.	3.9	57
75	GIS-based assessment of photovoltaic (PV) and concentrated solar power (CSP) generation potential in West Africa. Renewable and Sustainable Energy Reviews, 2018, 81, 2088-2103.	8.2	148
76	Analysis of the energy efficiency potential of household lighting in Switzerland using a stock model. Energy and Buildings, 2018, 158, 536-548.	3.1	31
77	Assessment of the current thermal performance level of the Swiss residential building stock: Statistical analysis of energy performance certificates. Energy and Buildings, 2018, 178, 360-378.	3.1	68
78	Excess heat recovery: An invisible energy resource for the Swiss industry sector. Applied Energy, 2018, 228, 390-408.	5.1	36
79	Combining "carrot and stick―to incentivize sustainability in households. Energy Policy, 2018, 123, 31-40.	4.2	19
80	Emerging bioeconomy sectors in energy systems modeling – Integrated systems analysis of electricity, heat, road transport, aviation, and chemicals: a case study for the Netherlands. Biofuels, Bioproducts and Biorefining, 2018, 12, 665-693.	1.9	20
81	Life cycle assessment of sisal fibre – Exploring how local practices can influence environmental performance. Journal of Cleaner Production, 2017, 149, 818-827.	4.6	51
82	The role of bioenergy and biochemicals in <scp>CO</scp> ₂ mitigation through the energy system – a scenario analysis for the Netherlands. GCB Bioenergy, 2017, 9, 1489-1509.	2.5	21
83	Cost-effectiveness of energy efficiency programs: How to better understand and improve from multiple stakeholder perspectives?. Energy Policy, 2017, 108, 538-550.	4.2	26
84	An interdisciplinary review of energy storage for communities: Challenges and perspectives. Renewable and Sustainable Energy Reviews, 2017, 79, 730-749.	8.2	209
85	An integrated techno-economic and life cycle environmental assessment of power-to-gas systems. Applied Energy, 2017, 193, 440-454.	5.1	204
86	Bottom-up analysis of energy efficiency improvement and CO2 emission reduction potentials in the Swiss cement industry. Journal of Cleaner Production, 2017, 142, 4294-4309.	4.6	68
87	Techno-economic potential of large-scale energy retrofit in the Swiss residential building stock. Energy Procedia, 2017, 122, 121-126.	1.8	32
88	Electro What: A platform for territorial analysis of electricity consumption. Energy Procedia, 2017, 122, 92-97.	1.8	2
89	Actual energy performance of student housing: case study, benchmarking and performance gap analysis. Energy Procedia, 2017, 122, 163-168.	1.8	14
90	Techno-economic and environmental assessment of stationary electricity storage technologies for different time scales. Energy, 2017, 139, 1173-1187.	4.5	95

Martin Patel

#	Article	IF	CITATIONS
91	Techno-economic analysis of energy efficiency improvement in electric motor driven systems in Swiss industry. Applied Energy, 2017, 205, 85-104.	5.1	34
92	Optimizing PV and grid charging in combined applications to improve the profitability of residential batteries. Journal of Energy Storage, 2017, 13, 58-72.	3.9	74
93	Applying ex-post index decomposition analysis to primary energy consumption for evaluating progress towards European energy efficiency targets. Energy Efficiency, 2017, 10, 1381-1400.	1.3	31
94	Spatial–Temporal Analysis of the Heat and Electricity Demand of the Swiss Building Stock. Frontiers in Built Environment, 2017, 3, .	1.2	20
95	Editorial: Behavioral Insights for a Sustainable Energy Transition. Frontiers in Energy Research, 2016, 4, .	1.2	3
96	Final Energy Requirements of Steam for Use in Environmental Life Cycle Assessment. Journal of Industrial Ecology, 2016, 20, 828-836.	2.8	9
97	Conceptual design of sustainable integrated microalgae biorefineries: Parametric analysis of energy use, greenhouse gas emissions and techno-economics. Algal Research, 2016, 17, 113-131.	2.4	54
98	Comparing biobased products from oil crops versus sugar crops with regard to non-renewable energy use, GHG emissions and land use. Industrial Crops and Products, 2016, 84, 366-374.	2.5	19
99	Value creation with life cycle assessment: an approach to contextualize the application of life cycle assessment in chemical companies to create sustainable value. Journal of Cleaner Production, 2016, 126, 337-351.	4.6	24
100	Early-stage sustainability assessment to assist with material selection: a case study for biobased printer panels. Journal of Cleaner Production, 2016, 135, 30-41.	4.6	35
101	Long-term model-based projections of energy use and CO2 emissions from the global steel and cement industries. Resources, Conservation and Recycling, 2016, 112, 15-36.	5.3	196
102	Techno-economic implications of the electrolyser technology and size for power-to-gas systems. International Journal of Hydrogen Energy, 2016, 41, 3748-3761.	3.8	144
103	Contributing to a green energy economy? A macroeconomic analysis of an energy efficiency program operated by a Swiss utility. Applied Energy, 2016, 179, 1304-1320.	5.1	35
104	Effect of tariffs on the performance and economic benefits of PV-coupled battery systems. Applied Energy, 2016, 164, 175-187.	5.1	107
105	Increasing Precision in Greenhouse Gas Accounting Using Realâ€Time Emission Factors. Journal of Industrial Ecology, 2015, 19, 380-390.	2.8	20
106	Life cycle impact assessment of bio-based plastics from sugarcane ethanol. Journal of Cleaner Production, 2015, 90, 114-127.	4.6	142
107	Fuels and plastics from lignocellulosic biomass via the furan pathway: an economic analysis. Biofuels, Bioproducts and Biorefining, 2015, 9, 307-325.	1.9	25
108	Life cycle inventory data quality issues for bioplastics feedstocks. International Journal of Life Cycle Assessment, 2015, 20, 584-596.	2.2	20

#	Article	IF	CITATIONS
109	Prospective life cycle assessment of an antibacterial T-shirt and supporting business decisions to create value. Resources, Conservation and Recycling, 2015, 103, 47-57.	5.3	39
110	On the electrification of road transportation – A review of the environmental, economic, and social performance of electric two-wheelers. Transportation Research, Part D: Transport and Environment, 2015, 41, 348-366.	3.2	145
111	Choosing sustainable technologies. Implications of the underlying sustainability paradigm in the decision-making process. Journal of Cleaner Production, 2015, 105, 438-446.	4.6	56
112	Analysis of sustainability metrics and application to the catalytic production of higher alcohols from ethanol. Catalysis Today, 2015, 239, 56-79.	2.2	45
113	Is ethanol worth tanking only when it costs 70% of the price of the equivalent in volume of gasoline?. Biofuels, 2014, 5, 195-198.	1.4	2
114	Affective Influences on Energy-Related Decisions and Behaviors. Frontiers in Energy Research, 2014, 2, .	1.2	46
115	LCA benchmarking study on textiles made of cotton, polyester, nylon, acryl, or elastane. International Journal of Life Cycle Assessment, 2014, 19, 331-356.	2.2	159
116	Forecasting global developments in the basic chemical industry for environmental policy analysis. Energy Policy, 2014, 64, 273-287.	4.2	39
117	Innovative membrane filtration system for micropollutant removal from drinking water – prospective environmental LCA and its integration in business decisions. Journal of Cleaner Production, 2014, 72, 153-166.	4.6	48
118	Fuels and plastics from lignocellulosic biomass via the furan pathway; a technical analysis. RSC Advances, 2014, 4, 3536-3549.	1.7	61
119	Ex-ante life cycle assessment of polymer nanocomposites using organo-modified layered double hydroxides for potential application in agricultural films. Green Chemistry, 2014, 16, 4969-4984.	4.6	49
120	Energy demand and emissions of the non-energy sector. Energy and Environmental Science, 2014, 7, 482-498.	15.6	62
121	Assessment of the technical and economic potentials of biomass use for the production of steam, chemicals and polymers. Renewable and Sustainable Energy Reviews, 2014, 40, 1153-1167.	8.2	59
122	Competing uses of biomass: Assessment and comparison of the performance of bio-based heat, power, fuels and materials. Renewable and Sustainable Energy Reviews, 2014, 40, 964-998.	8.2	132
123	Environmental assessment of coloured fabrics and opportunities for value creation: spin-dyeing versus conventional dyeing of modal fabrics. Journal of Cleaner Production, 2014, 72, 127-138.	4.6	52
124	Succinic acid production derived from carbohydrates: An energy and greenhouse gas assessment of a platform chemical toward a bioâ€based economy. Biofuels, Bioproducts and Biorefining, 2014, 8, 16-29.	1.9	246
125	District heating in the Netherlands today: A techno-economic assessment for NGCC-CHP (Natural Gas) Tj ETQq1	1 0.78431 4.5	.4 rgBT /Ove
	Linking historic developments and future scenarios of industrial energy use in the Netherlands		

 Linking historic developments and future scenarios of industrial energy use in the N between 1993 and 2040. Energy Efficiency, 2013, 6, 341-368. 1.3 5

#	Article	IF	CITATIONS
127	Potential of bioethanol as a chemical building block for biorefineries: Preliminary sustainability assessment of 12 bioethanol-based products. Bioresource Technology, 2013, 135, 490-499.	4.8	195
128	Critical aspects in the life cycle assessment (LCA) of bio-based materials – Reviewing methodologies and deriving recommendations. Resources, Conservation and Recycling, 2013, 73, 211-228.	5.3	213
129	Modelling the future CO2 abatement potentials of energy efficiency and CCS: The case of the Dutch industry. International Journal of Greenhouse Gas Control, 2013, 18, 23-37.	2.3	21
130	Energy and greenhouse gas assessment of European glucose production from corn – a multiple allocation approach for a key ingredient of the bio-based economy. Journal of Cleaner Production, 2013, 43, 182-190.	4.6	32
131	The impact of copper scarcity on the efficiency of 2050 global renewable energy scenarios. Energy, 2013, 50, 62-73.	4.5	107
132	Early‣tage Comparative Sustainability Assessment of New Bioâ€based Processes. ChemSusChem, 2013, 6, 1724-1736.	3.6	42
133	Replacing fossil based PET with biobased PEF; process analysis, energy and CHG balance. Energy and Environmental Science, 2012, 5, 6407.	15.6	478
134	Comparing life cycle energy and <scp>GHG</scp> emissions of bioâ€based <scp>PET</scp> , recycled <scp>PET</scp> , <scp>PLA</scp> , and manâ€made cellulosics. Biofuels, Bioproducts and Biorefining, 2012, 6, 625-639.	1.9	95
135	Sustainability assessment of novel chemical processes at early stage: application to biobased processes. Energy and Environmental Science, 2012, 5, 8430.	15.6	138
136	On the electrification of road transport - Learning rates and price forecasts for hybrid-electric and battery-electric vehicles. Energy Policy, 2012, 48, 374-393.	4.2	144
137	Long-term energy efficiency analysis requires solid energy statistics: The case of the German basic chemical industry. Energy, 2012, 44, 1094-1106.	4.5	17
138	Innovations in papermaking: An LCA of printing and writing paper from conventional and high yield pulp. Science of the Total Environment, 2012, 439, 307-320.	3.9	56
139	Accounting for the constrained availability of land: a comparison of bioâ€based ethanol, polyethylene, and PLA with regard to nonâ€renewable energy use and land use. Biofuels, Bioproducts and Biorefining, 2012, 6, 146-158.	1.9	37
140	Plastics Derived from Biological Sources: Present and Future: A Technical and Environmental Review. Chemical Reviews, 2012, 112, 2082-2099.	23.0	792
141	A Review of the Environmental Impacts of Biobased Materials. Journal of Industrial Ecology, 2012, 16, S169.	2.8	233
142	Preliminary evaluation of risks related to waste incineration of polymer nanocomposites. Science of the Total Environment, 2012, 417-418, 76-86.	3.9	78
143	Bioenergy. , 2011, , 209-332.		162
144	Potential of best practice technology to improve energy efficiency in the global chemical and petrochemical sector. Energy, 2011, 36, 5779-5790.	4.5	74

#	Article	IF	CITATIONS
145	Benchmarking the energy use of energy-intensive industries in industrialized and in developing countries. Energy, 2011, 36, 6661-6673.	4.5	103
146	Life cycle energy and GHG emissions of PET recycling: change-oriented effects. International Journal of Life Cycle Assessment, 2011, 16, 522-536.	2.2	81
147	Current policies affecting the market penetration of biomaterials [*] . Biofuels, Bioproducts and Biorefining, 2011, 5, 708-719.	1.9	21
148	Ex-ante environmental assessments of novel technologies – Improved caprolactam catalysis and hydrogen storage. Journal of Cleaner Production, 2011, 19, 1659-1667.	4.6	50
149	To compost or not to compost: Carbon and energy footprints of biodegradable materials' waste treatment. Polymer Degradation and Stability, 2011, 96, 1159-1171.	2.7	197
150	Environmental Assessment of a Sugar Cane Bagasse Food Tray Produced by Roots Biopack—Results of a Shortcut-Life Cycle Assessment. Journal of Biobased Materials and Bioenergy, 2011, 5, 140-152.	0.1	5
151	Using Life Cycle Assessment to Evaluate the Environmental Performance of Bio-Based Materials. , 2011, , 189-210.		0
152	Twisting biomaterials around your little finger: environmental impacts of bio-based wrappings. International Journal of Life Cycle Assessment, 2010, 15, 346-358.	2.2	41
153	Influence of using nanoobjects as filler on functionality-based energy use of nanocomposites. Journal of Nanoparticle Research, 2010, 12, 2011-2028.	0.8	41
154	A review of experience curve analyses for energy demand technologies. Technological Forecasting and Social Change, 2010, 77, 411-428.	6.2	163
155	Present and future development in plastics from biomass. Biofuels, Bioproducts and Biorefining, 2010, 4, 25-40.	1.9	306
156	Biorefinery systems – potential contributors to sustainable innovation. Biofuels, Bioproducts and Biorefining, 2010, 4, 275-286.	1.9	47
157	Open-loop recycling: A LCA case study of PET bottle-to-fibre recycling. Resources, Conservation and Recycling, 2010, 55, 34-52.	5.3	340
158	Environmental impact assessment of man-made cellulose fibres. Resources, Conservation and Recycling, 2010, 55, 260-274.	5.3	134
159	Analyzing price and efficiency dynamics of large appliances with the experience curve approach. Energy Policy, 2010, 38, 770-783.	4.2	57
160	Non-energy use of fossil fuels and resulting carbon dioxide emissions: bottom–up estimates for the world as a whole and for major developing countries. Climatic Change, 2009, 95, 369-394.	1.7	22
161	Exâ€ante environmental and economic evaluation of polymer photovoltaics. Progress in Photovoltaics: Research and Applications, 2009, 17, 372-393.	4.4	141
162	Voluntary agreements with white certificates for energy efficiency improvement as a hybrid policy instrument. Energy Policy, 2009, 37, 1970-1982.	4.2	20

#	Article	IF	CITATIONS
163	Market diffusion, technological learning, and cost-benefit dynamics of condensing gas boilers in the Netherlands. Energy Policy, 2009, 37, 2962-2976.	4.2	34
164	Basic petrochemicals from natural gas, coal and biomass: Energy use and CO2 emissions. Resources, Conservation and Recycling, 2009, 53, 513-528.	5.3	72
165	Petrochemicals from oil, natural gas, coal and biomass: Production costs in 2030–2050. Resources, Conservation and Recycling, 2009, 53, 653-663.	5.3	56
166	Life Cycle Assessment of Polysaccharide Materials: A Review. Journal of Polymers and the Environment, 2008, 16, 154-167.	2.4	125
167	Non-energy use and related carbon dioxide emissions in Germany: A carbon flow analysis with the NEAT model for the period of 1990–2003. Resources, Conservation and Recycling, 2008, 52, 1252-1265.	5.3	10
168	Applying bottom-up analysis to identify the system boundaries of non-energy use data in international energy statistics. Energy, 2008, 33, 1609-1622.	4.5	14
169	Scenario Projections for Future Market Potentials of Biobased Bulk Chemicals. Environmental Science & Technology, 2008, 42, 2261-2267.	4.6	57
170	Reducing Industrial Energy Use and CO ₂ Emissions: The Role of Materials Science. MRS Bulletin, 2008, 33, 471-477.	1.7	35
171	Spillover impacts of climate policy on energyintensive industry. , 2008, , 65-77.		1
172	Producing Bio-Based Bulk Chemicals Using Industrial Biotechnology Saves Energy and Combats Climate Change. Environmental Science & Technology, 2007, 41, 7915-7921.	4.6	207
173	Approximation of theoretical energy-saving potentials for the petrochemical industry using energy balances for 68 key processesâ~†. Energy, 2007, 32, 1104-1123.	4.5	71
174	An ex-ante evaluation of a White Certificates scheme in The Netherlands: A case study for the household sector. Energy Policy, 2007, 35, 1147-1163.	4.2	39
175	Analysis of energy use and carbon losses in the chemical industry. Applied Energy, 2007, 84, 853-862.	5.1	21
176	Applying distance-to-target weighing methodology to evaluate the environmental performance of bio-based energy, fuels, and materials. Resources, Conservation and Recycling, 2007, 50, 260-281.	5.3	55
177	Life Cycle Risks for Human Health: A Comparison of Petroleum Versus Bioâ€Based Production of Five Bulk Organic Chemicals. Risk Analysis, 2007, 27, 1311-1321.	1.5	18
178	Comparative Life Cycle Studies on Poly(3-hydroxybutyrate)-Based Composites as Potential Replacement for Conventional Petrochemical Plastics. Biomacromolecules, 2007, 8, 2210-2218.	2.6	106
179	Environmental and Cost Assessment of a Polypropylene Nanocomposite. Journal of Polymers and the Environment, 2007, 15, 212-226.	2.4	109
180	Today's and tomorrow's bio-based bulk chemicals from white biotechnology. Applied Biochemistry and Biotechnology, 2007, 136, 361-388.	1.4	141

#	Article	IF	CITATIONS
181	Energy efficiency developments in the Dutch energy-intensive manufacturing industry, 1980–2003. Energy Policy, 2007, 35, 6112-6131.	4.2	39
182	Projections for the Production of Bulk Volume Bio-Based Polymers in Europe and Environmental Implications. Journal of Biobased Materials and Bioenergy, 2007, 1, 437-453.	0.1	7
183	Olefins from conventional and heavy feedstocks: Energy use in steam cracking and alternative processes. Energy, 2006, 31, 425-451.	4.5	842
184	How much energy to process one pound of meat? A comparison of energy use and specific energy consumption in the meat industry of four European countries. Energy, 2006, 31, 2047-2063.	4.5	90
185	From fluid milk to milk powder: Energy use and energy efficiency in the European dairy industry. Energy, 2006, 31, 1984-2004.	4.5	176
186	Adding apples and oranges: The monitoring of energy efficiency in the Dutch food industry. Energy Policy, 2006, 34, 1720-1735.	4.2	60
187	Climate policy: Bucket or drainer?. Energy Policy, 2006, 34, 3656-3668.	4.2	16
188	Economics and GHG emission reduction of a PLA bio-refinery system—Combining bottom-up analysis with price elasticity effects. Resources, Conservation and Recycling, 2006, 46, 377-409.	5.3	39
189	Plastics materials flow analysis for India. Resources, Conservation and Recycling, 2006, 47, 222-244.	5.3	128
190	The Potential of Renewables as a Feedstock for Chemistry and Energy. , 2006, , 19-37.		1
191	On the Environmental Performance of Biobased Energy, Fuels, and Materials. , 2006, , 137-154.		0
192	Carbon dioxide emissions from non-energy use of fossil fuels: Summary of key issues and conclusions from the country analyses. Resources, Conservation and Recycling, 2005, 45, 195-209.	5.3	27
193	Modelling CO2 emissions from non-energy use with the non-energy use emission accounting tables (NEAT) model. Resources, Conservation and Recycling, 2005, 45, 226-250.	5.3	44
194	CO2 emissions and carbon storage resulting from the non-energy use of fossil fuels in the Netherlands, NEAT results for 1993–1999. Resources, Conservation and Recycling, 2005, 45, 251-274.	5.3	17
195	"White and Green― Comparison of market-based instruments to promote energy efficiency. Journal of Cleaner Production, 2005, 13, 1015-1026.	4.6	59
196	The non-energy intensive manufacturing sector.: An energy analysis relating to the Netherlands. Energy, 2005, 30, 749-767.	4.5	47
197	Surfactants Based on Renewable Raw Materials Journal of Industrial Ecology, 2003, 7, 47-62.	2.8	34
198	Comparing the Land Requirements, Energy Savings, and Greenhouse Gas Emissions Reduction of Biobased Polymers and Bioenergy Journal of Industrial Ecology, 2003, 7, 93-116.	2.8	95

#	Article	IF	CITATIONS
199	Cumulative energy demand (CED) and cumulative CO2 emissions for products of the organic chemical industry. Energy, 2003, 28, 721-740.	4.5	56
200	Carbon use for synthetic materials in Germany — current situation and saving potentials for energy and CO2. Resources, Conservation and Recycling, 2000, 31, 9-50.	5.3	4
201	Recycling of plastics in Germany. Resources, Conservation and Recycling, 2000, 29, 65-90.	5.3	96
202	Surfactant production and use in Germany: resource requirements and CO2 emissions. Resources, Conservation and Recycling, 1999, 25, 61-78.	5.3	33
203	Plastics streams in Germany—an analysis of production, consumption and waste generation. Resources, Conservation and Recycling, 1998, 24, 191-215.	5.3	71