Chul Soon Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4302940/publications.pdf Version: 2024-02-01

CHUL SOON PARK

#	Article	IF	CITATIONS
1	A 67-mW 10.7-Gb/s 60-GHz OOK CMOS Transceiver for Short-Range Wireless Communications. IEEE Transactions on Microwave Theory and Techniques, 2013, 61, 3391-3401.	4.6	171
2	Spin nano–oscillator–based wireless communication. Scientific Reports, 2014, 4, 5486.	3.3	107
3	Analysis of High-Efficiency Power Amplifier Using Second Harmonic Manipulation: Inverse Class-F/J Amplifiers. IEEE Transactions on Microwave Theory and Techniques, 2011, 59, 2024-2036.	4.6	92
4	A Wideband Aperture Efficient 60-GHz Series-Fed E-Shaped Patch Antenna Array With Copolarized Parasitic Patches. IEEE Transactions on Antennas and Propagation, 2016, 64, 5518-5521.	5.1	52
5	60 GHz Low-Profile, Wideband Dual-Polarized U-Slot Coupled Patch Antenna With High Isolation. IEEE Transactions on Antennas and Propagation, 2019, 67, 4453-4462.	5.1	41
6	A 2.16 mW Low Power Digitally-Controlled Variable Gain Amplifier. IEEE Microwave and Wireless Components Letters, 2010, 20, 172-174.	3.2	40
7	A D-Band Gain-Boosted Current Bleeding Down-Conversion Mixer in 65 nm CMOS for Chip-to-Chip Communication. IEEE Microwave and Wireless Components Letters, 2016, 26, 143-145.	3.2	33
8	A 60 GHz 5 Gb/s Gain-Boosting OOK Demodulator in 0.13 <formula formulatype="inline"><tex Notation="TeX">\$mu{m m}\$ </tex </formula> CMOS. IEEE Microwave and Wireless Components Letters, 2011, 21, 101-103.	3.2	30
9	A 109 GHz CMOS Power Amplifier With 15.2 dBm Psat and 20.3 dB Gain in 65-nm CMOS Technology. IEEE Microwave and Wireless Components Letters, 2016, 26, 510-512.	3.2	29
10	A Low-Loss Compact 60-GHz Phase Shifter in 65-nm CMOS. IEEE Microwave and Wireless Components Letters, 2017, 27, 663-665.	3.2	28
11	A 60 GHz Current-Reuse LO-Boosting Mixer in 90 nm CMOS. IEEE Microwave and Wireless Components Letters, 2012, 22, 135-137.	3.2	24
12	Low-Loss Compact Millimeter-Wave Power Divider/Combiner for Phased Array Systems. IEEE Microwave and Wireless Components Letters, 2019, 29, 312-314.	3.2	23
13	A Reconfigurable Quad-Band CMOS Class E Power Amplifier for Mobile and Wireless Applications. IEEE Microwave and Wireless Components Letters, 2011, 21, 380-382.	3.2	19
14	A 60 GHz Compact Multidirectional-Beam Antenna-in-Package for Mobile Devices. IEEE Antennas and Wireless Propagation Letters, 2019, 18, 2434-2438.	4.0	18
15	Pole-Controlled Wideband 120 GHz CMOS Power Amplifier for Wireless Chip-to-Chip Communication in 40-nm CMOS Process. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, 66, 1351-1355.	3.0	17
16	High-Efficiency Envelope-Tracking Transmitter With Optimized Class-\${hbox{F}}^{-1}\$ Amplifier and 2-bit Envelope Amplifier for 3G LTE Base Station. IEEE Transactions on Microwave Theory and Techniques, 2011, 59, 1610-1621.	4.6	16
17	Envelope Amplifier With Multiple-Linear Regulator for Envelope Tracking Power Amplifier. IEEE Transactions on Microwave Theory and Techniques, 2013, 61, 3951-3960.	4.6	16
18	A \$D\$ -Band Low-Power Gain-Boosted Up-Conversion Mixer With Low LO Power in 40-nm CMOS Technology. IEEE Microwave and Wireless Components Letters, 2017, 27, 1113-1115.	3.2	16

CHUL SOON PARK

#	Article	IF	CITATIONS
19	An efficient voltage-mode class-D power amplifier for digital transmitters with delta-sigma modulation. , 2011, , .		14
20	60% high-efficiency 3G LTE power amplifier with three-level delta sigma modulation assisted by dual supply injection. , 2011, , .		14
21	Wireless Spintronics Modulation With a Spin Torque Nano-Oscillator (STNO) Array. IEEE Microwave and Wireless Components Letters, 2014, 24, 502-504.	3.2	14
22	A High-Efficiency 60-GHz CMOS Transmitter for Short-Range Wireless Communications. IEEE Microwave and Wireless Components Letters, 2017, 27, 751-753.	3.2	14
23	A W-band CMOS low power wideband low noise amplifier with 22 dB gain and 3dB bandwidth of 20 GHz. , 2015, , .		13
24	LTCC-based monolithic system-in-package (SiP) module for millimeter-wave applications. International Journal of RF and Microwave Computer-Aided Engineering, 2016, 26, 803-811.	1.2	13
25	A CMOS Envelope-Tracking Transmitter With an On-Chip Common-Gate Voltage Modulation Linearizer. IEEE Microwave and Wireless Components Letters, 2014, 24, 406-408.	3.2	12
26	Single-Ended CMOS Doherty Power Amplifier Using Current Boosting Technique. IEEE Microwave and Wireless Components Letters, 2014, 24, 342-344.	3.2	12
27	A Wideband 120-GHz Variable Gain Amplifier With Multistage Phase Compensation. IEEE Transactions on Microwave Theory and Techniques, 2020, 68, 2419-2427.	4.6	12
28	A Highly Integrated 1-Bit Phase Shifter Based on High-Pass/Low-Pass Structure. IEEE Microwave and Wireless Components Letters, 2015, 25, 523-525.	3.2	11
29	Low-Power, Low-Phase-Noise G _m -Boosted 10-GHz VCO With Center-Tap Transformer and Stacked Transistor. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67, 1710-1714.	3.0	11
30	A Feedback Technique to Compensate for AM-PM Distortion in Linear CMOS Class-F Power Amplifier. IEEE Microwave and Wireless Components Letters, 2014, 24, 725-727.	3.2	10
31	A 60 GHz Wideband Switched-Beam Dipole-Array-Fed Hybrid Horn Antenna. IEEE Antennas and Wireless Propagation Letters, 2018, 17, 1344-1348.	4.0	9
32	120ÂGHz On-Board Chip-to-Chip Wireless Link Using Y-Shaped Open-Ended Microstrip Antenna. IEEE Antennas and Wireless Propagation Letters, 2019, 18, 2165-2169.	4.0	9
33	Analysis and Implementation of Doherty Power Amplifier With Two-Point Envelope Modulation. IEEE Transactions on Microwave Theory and Techniques, 2012, 60, 1353-1364.	4.6	8
34	A Low Power LNA-Phase Shifter With Vector Sum Method for 60 GHz Beamforming Receiver. IEEE Microwave and Wireless Components Letters, 2015, 25, 612-614.	3.2	8
35	An 20-Gb/s W-Band OOK CMOS Receiver for High-Speed Wireless Interconnect. IEEE Microwave and Wireless Components Letters, 2016, 26, 840-842.	3.2	8
36	60 GHz Wideband Low-Profile Circularly Polarized Patch Antenna With an Asymmetric Inset. IEEE Antennas and Wireless Propagation Letters, 2020, 19, 44-48.	4.0	8

#	Article	IF	CITATIONS
37	A Fully Integrated Triple-Band CMOS Class-E Power Amplifier With a Power Cell Resizing Technique and a Multi-Tap Transformer. IEEE Microwave and Wireless Components Letters, 2013, 23, 659-661.	3.2	7
38	Low-profile wideband E-shaped patch antenna for 60GHz Communication. , 2015, , .		7
39	Power-Efficient Spin-Torque Nano-Oscillator-Based Wireless Communication With CMOS High-Gain Low-Noise Transmitter and Receiver. IEEE Transactions on Magnetics, 2019, 55, 1-10.	2.1	7
40	Concurrent dual-channel RF transceiver module with diversity for 802.11p WAVE. , 2012, , .		5
41	A triple-band CMOS class-E power amplifier for WCDMA/LTE applications. , 2013, , .		5
42	Lowâ€cost, compact millimeterâ€wave antennaâ€inâ€package for shortâ€range wireless communications. Microwave and Optical Technology Letters, 2017, 59, 329-333.	1.4	5
43	Design and implementation of electromagnetic bandâ€gap embedded antenna for vehicleâ€ŧoâ€everything communications in vehicular systems. ETRI Journal, 2019, 41, 731-738.	2.0	5
44	A Fully Integrated CMOS Class-E Power Amplifier for Reconfigurable Transmitters with WCDMA/WiMAX Applications. , 2013, , .		4
45	High Efficiency HBT Power Amplifier Utilizing Optimum Phase of Second Harmonic Source Impedance. IEEE Microwave and Wireless Components Letters, 2015, 25, 721-723.	3.2	4
46	A fully integrated triple-band CMOS hybrid-EER transmitter for WCDMA/LTE applications. , 2014, , .		3
47	A 117 GHz all-parallel sub-harmonically Injection-Locked quadrature CMOS voltage-controlled oscillator. , 2016, , .		3
48	A highâ€efficiency 60â€CHz indirect local oscillator in 90â€nm CMOS. Microwave and Optical Technology Letters, 2016, 58, 2091-2093.	1.4	3
49	A CMOS D-band low noise amplifier with 22.4dB gain and a 3dB bandwidth of 16GHz for wireless chip to chip communication. , 2017, , .		3
50	Highly efficient Doherty amplifier with peaking cell controlled using optimized shaped gate voltage. , 2012, , .		2
51	A hybrid envelope amplifier with switching-controlled structure for EDGE/WCDMA/LTE reconfigurable transmitters. , 2012, , .		2
52	Low power and high speed OOK modulator for wireless inter-chip communications. , 2015, , .		2
53	A 60-GHz low-profile, wide-band, and high-gain E-shaped patch array with parasitic patches. , 2018, , .		2

54 A 120 GHz Wireless Radio Link for High-speed Chip-to-Chip Communication. , 2019, , .

2

CHUL SOON PARK

CHUL SOON PARK

#	Article	IF	CITATIONS
55	A 60â€GHz variable gain amplifier with low phase and OP1dB variation. Microwave and Optical Technology Letters, 2020, 62, 696-700.	1.4	2
56	A CMOS Programmable Gain Amplifier with Constant Current-Density Based Transconductance Control. , 2010, , .		1
57	mmWave mirror link between the mobile device and the public display in vehicles. , 2014, , .		1
58	Compact LTCC Yagi-Uda type end-fire antenna-in-package for 60 GHz wireless communications. , 2014, , .		1
59	<scp>BPF</scp> integrated amplifier module using <scp>LTCC</scp> technology for millimeterâ€wave applications. Microwave and Optical Technology Letters, 2015, 57, 1821-1825.	1.4	1
60	A Low-Phase-Noise 20 GHz Phase-Locked Loop with Parasitic Capacitance Reduction Technique for V-band Applications. , 2018, , .		1
61	A Wideband 120 GHz Up-Conversion Mixer in 40 nm CMOS for Chip to Chip Communication. , 2020, , .		1
62	A 120 GHz Wideband CMOS I/Q Transmitter for Short-Range Wireless Device-to-Device Communication. , 2020, , .		1
63	A 0.75–6.75 GHz receiver with a digitally controlled LO generator for software-defined radio. , 2010, , .		Ο
64	A direct down - Converted band pass delta sigma receiver with frequency translating and RF DAC. , 2011, , .		0
65	A direct down converted low-jitter band pass delta sigma receiver with frequency translating technique and sinusoidal RF DAC. , 2012, , .		Ο
66	35 W bi-level supply modulated Doherty amplifier for 3G LTE base station. , 2012, , .		0
67	A comparator with reduced regeneration time for continuous-time delta-sigma modulator. , 2013, , .		0
68	Design of a reconfigurable phase controller for focused ultrasound therapeutic device. , 2014, , .		0
69	A high data rate and high efficiency 60 <scp>G</scp> <scp>H</scp> z <scp>OOK</scp> demodulator in 90 NM <scp>CMOS</scp> . Microwave and Optical Technology Letters, 2017, 59, 1081-1084.	1.4	Ο
70	Wideband Phase-Compensated VGA with PMOS Switch in 40-nm CMOS for 120-GHz Band. Journal of Infrared, Millimeter, and Terahertz Waves, 2021, 42, 514-524.	2.2	0
71	Feasibility study on transcutaneous auricular vagus nerve stimulation using millimeter waves. Biomedical Physics and Engineering Express, 2021, 7, 065028.	1.2	Ο
72	A 41.8 GHz Drain-to-Source and Gate-to-Source Feedback Colpitts VCO in 40-nm CMOS. , 2020, , .		0

#	Article	IF	CITATIONS
73	60ÂGHz wideâ€band psi (î ⁻)â€shaped longâ€wire antenna for wireless onâ€board chipâ€toâ€multiâ€chip commu IET Microwaves, Antennas and Propagation, 2020, 14, 2074-2080.	nication. 1.4	0
74	A 60-GHz X-type Variable Gain Attenuator. , 2022, , .		0
75	A Broadband CMOS Doherty Power Amplifier with Asymmetric-Transformer-based Output Matching Network. , 2022, , .		0