Alexander Kros

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4302853/publications.pdf

Version: 2024-02-01

71532 46918 6,876 149 47 76 citations h-index g-index papers 167 167 167 9568 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Dielectricâ€Modulated Biosensing with Ultrahighâ€Frequencyâ€Operated Graphene Fieldâ€Effect Transistors. Advanced Materials, 2022, 34, e2106666.	11.1	16
2	THE USE OF A STAGGERED HERRINGBONE MICROMIXER FOR THE PREPARATION OF RIGID LIPOSOMAL FORMULATIONS ALLOWS EFFICIENT ENCAPSULATION OF ANTIGEN AND ADJUVANT. Journal of Pharmaceutical Sciences, 2022, , .	1.6	2
3	Coating Gold Nanorods with Self-Assembling Peptide Amphiphiles Promotes Stability and Facilitates in vivo Two-Photon Imaging. Journal of Materials Chemistry B, 2022, , .	2.9	2
4	Two Types of Liposomal Formulations Improve the Therapeutic Ratio of Prednisolone Phosphate in a Zebrafish Model for Inflammation. Cells, 2022, 11, 671.	1.8	3
5	Dielectricâ€Modulated Biosensing with Ultrahighâ€Frequencyâ€Operated Graphene Fieldâ€Effect Transistors (Adv. Mater. 7/2022). Advanced Materials, 2022, 34, .	11.1	1
6	Anionic Lipid Nanoparticles Preferentially Deliver mRNA to the Hepatic Reticuloendothelial System. Advanced Materials, 2022, 34, e2201095.	11.1	66
7	Gold nanoparticles decorated with ovalbumin-derived epitopes: effect of shape and size on T-cell immune responses. RSC Advances, 2022, 12, 19703-19716.	1.7	1
8	Generating Heterokaryotic Cells via Bacterial Cell-Cell Fusion. Microbiology Spectrum, 2022, 10, .	1.2	3
9	Probing the E/K Peptide Coiled-Coil Assembly by Double Electron–Electron Resonance and Circular Dichroism. Biochemistry, 2021, 60, 19-30.	1.2	4
10	Development of curcumin-loaded zein nanoparticles for transport across the blood–brain barrier and inhibition of glioblastoma cell growth. Biomaterials Science, 2021, 9, 7092-7103.	2.6	46
11	Liposome fusion with orthogonal coiled coil peptides as fusogens: the efficacy of roleplaying peptides. Chemical Science, 2021, 12, 13782-13792.	3.7	15
12	Magnetic-Activated Cell Sorting Using Coiled-Coil Peptides: An Alternative Strategy for Isolating Cells with High Efficiency and Specificity. ACS Applied Materials & Samp; Interfaces, 2021, 13, 11621-11630.	4.0	12
13	Antigen Uptake After Intradermal Microinjection Depends on Antigen Nature and Formulation, but Not on Injection Depth. Frontiers in Allergy, 2021, 2, 642788.	1.2	5
14	Multistage signal-interactive nanoparticles improve tumor targeting through efficient nanoparticle-cell communications. Cell Reports, 2021, 35, 109131.	2.9	6
15	Stabilin-1 is required for the endothelial clearance of small anionic nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 34, 102395.	1.7	17
16	ADAM9-Responsive Mesoporous Silica Nanoparticles for Targeted Drug Delivery in Pancreatic Cancer. Cancers, 2021, 13, 3321.	1.7	11
17	Selfâ€assembly of thiolated versus nonâ€thiolated peptide amphiphiles. Peptide Science, 2021, 113, e24236.	1.0	1
18	Intracellular Dynamic Assembly of Deepâ€Red Emitting Supramolecular Nanostructures Based on the Pt…Pt Metallophilic Interaction. Advanced Materials, 2021, 33, e2008613.	11.1	17

#	Article	IF	Citations
19	Light-triggered switching of liposome surface charge directs delivery of membrane impermeable payloads in vivo. Nature Communications, 2020, 11, 3638.	5.8	62
20	Encapsulation of Graphene in the Hydrophobic Core of a Lipid Bilayer. Langmuir, 2020, 36, 14478-14482.	1.6	8
21	Use of Permanent Wall-Deficient Cells as a System for the Discovery of New-to-Nature Metabolites. Microorganisms, 2020, 8, 1897.	1.6	5
22	The Self-Assembly of a Cyclometalated Palladium Photosensitizer into Protein-Stabilized Nanorods Triggers Drug Uptake In Vitro and In Vivo. Journal of the American Chemical Society, 2020, 142, 10383-10399.	6.6	43
23	Oxyanion transport across lipid bilayers: direct measurements in large and giant unilamellar vesicles. Chemical Communications, 2020, 56, 4910-4913.	2.2	14
24	Controlled Peptide-Mediated Vesicle Fusion Assessed by Simultaneous Dual-Colour Time-Lapsed Fluorescence Microscopy. Scientific Reports, 2020, 10, 3087.	1.6	25
25	Graphene Liquid Cells Assembled through Loopâ€Assisted Transfer Method and Located with Correlated Lightâ€Electron Microscopy. Advanced Functional Materials, 2020, 30, 1904468.	7.8	24
26	Modulation of Coiled-Coil Binding Strength and Fusogenicity through Peptide Stapling. Bioconjugate Chemistry, 2020, 31, 834-843.	1.8	16
27	Stab2-Mediated Clearance of Supramolecular Polymer Nanoparticles in Zebrafish Embryos. Biomacromolecules, 2020, 21, 1060-1068.	2.6	8
28	Lightâ€Triggered Cancer Cell Specific Targeting and Liposomal Drug Delivery in a Zebrafish Xenograft Model. Advanced Healthcare Materials, 2020, 9, e1901489.	3.9	27
29	Photo-controlled delivery of very long chain fatty acids to cell membranes and modulation of membrane protein function. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183200.	1.4	8
30	One Peptide for Them All: Gold Nanoparticles of Different Sizes Are Stabilized by a Common Peptide Amphiphile. ACS Nano, 2020, 14, 5874-5886.	7.3	47
31	Complement Receptor Targeted Liposomes Encapsulating the Liver X Receptor Agonist GW3965 Accumulate in and Stabilize Atherosclerotic Plaques. Advanced Healthcare Materials, 2020, 9, e2000043.	3.9	14
32	Unbiased Identification of the Liposome Protein Corona using Photoaffinity-based Chemoproteomics. ACS Central Science, 2020, 6, 535-545.	5.3	41
33	Designing stable, hierarchical peptide fibers from block co-polypeptide sequences. Chemical Science, 2019, 10, 9001-9008.	3.7	8
34	DePEGylation strategies to increase cancer nanomedicine efficacy. Nanoscale Horizons, 2019, 4, 378-387.	4.1	74
35	Selective coordination of three transition metal ions within a coiled-coil peptide scaffold. Chemical Science, 2019, 10, 7456-7465.	3.7	23
36	Insights into IgM-mediated complement activation based on in situ structures of IgM-C1-C4b. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11900-11905.	3.3	112

3

#	Article	IF	Citations
37	Influence of Membrane–Fusogen Distance on the Secondary Structure of Fusogenic Coiled Coil Peptides. Langmuir, 2019, 35, 5501-5508.	1.6	4
38	Zebrafish as a preclinical in vivo screening model for nanomedicines. Advanced Drug Delivery Reviews, 2019, 151-152, 152-168.	6.6	107
39	Directing Nanoparticle Biodistribution through Evasion and Exploitation of Stab2-Dependent Nanoparticle Uptake. ACS Nano, 2018, 12, 2138-2150.	7.3	173
40	Lipid bilayer-coated mesoporous silica nanoparticles carrying bovine hemoglobin towards an erythrocyte mimic. International Journal of Pharmaceutics, 2018, 543, 169-178.	2.6	25
41	Dynamics of dual-fluorescent polymersomes with durable integrity in living cancer cells and zebrafish embryos. Biomaterials, 2018, 168, 54-63.	5.7	15
42	Distinct roles of SNARE-mimicking lipopeptides during initial steps of membrane fusion. Nanoscale, 2018, 10, 19064-19073.	2.8	14
43	Sequential Antifouling Surface for Efficient Modulation of the Nanoparticle–Cell Interactions in Proteinâ€Rich Environments. Advanced Therapeutics, 2018, 1, 1800013.	1.6	5
44	Peptide-Mediated Liposome Fusion: The Effect of Anchor Positioning. International Journal of Molecular Sciences, 2018, 19, 211.	1.8	13
45	Performing DNA nanotechnology operations on a zebrafish. Chemical Science, 2018, 9, 7271-7276.	3.7	17
46	Coated and Hollow Microneedle-Mediated Intradermal Immunization in Mice with Diphtheria Toxoid Loaded Mesoporous Silica Nanoparticles. Pharmaceutical Research, 2018, 35, 189.	1.7	24
47	Coiled-coil formation of the membrane-fusion K/E peptides viewed by electron paramagnetic resonance. PLoS ONE, 2018, 13, e0191197.	1.1	7
48	Combinatorial Evolution of Biomimetic Magnetite Nanoparticles. Advanced Functional Materials, 2017, 27, 1604863.	7.8	19
49	Crosslinkerâ€Induced Effects on the Gelation Pathway of a Low Molecular Weight Hydrogel. Advanced Materials, 2017, 29, 1603769.	11.1	21
50	Direct wiring of the azurin redox center to gold electrodes investigated by protein film voltammetry. Journal of Electroanalytical Chemistry, 2017, 787, 14-18.	1.9	3
51	Efficient Fusion of Liposomes by Nucleobase Quadrupleâ€Anchored DNA. Chemistry - A European Journal, 2017, 23, 9391-9396.	1.7	33
52	Mesoporous Silica Nanoparticle-Coated Microneedle Arrays for Intradermal Antigen Delivery. Pharmaceutical Research, 2017, 34, 1693-1706.	1.7	40
53	A flow cytometry assay to quantify intercellular exchange of membrane components. Chemical Science, 2017, 8, 5585-5590.	3.7	5
54	Intradermal vaccination with hollow microneedles: A comparative study of various protein antigen and adjuvant encapsulated nanoparticles. Journal of Controlled Release, 2017, 266, 109-118.	4.8	110

#	Article	IF	Citations
55	Membrane-Fusogen Distance Is Critical for Efficient Coiled-Coil-Peptide-Mediated Liposome Fusion. Langmuir, 2017, 33, 12443-12452.	1.6	25
56	Membrane Fusion Mediated Intracellular Delivery of Lipid Bilayer Coated Mesoporous Silica Nanoparticles. Advanced Healthcare Materials, 2017, 6, 1700759.	3.9	44
57	Evaluation of dextran(ethylene glycol) hydrogel films for giant unilamellar lipid vesicle production and their application for the encapsulation of polymersomes. Soft Matter, 2017, 13, 5580-5588.	1.2	15
58	Dualâ€Crosslinked Human Serum Albuminâ€Polymer Hydrogels for Affinityâ€Based Drug Delivery. Macromolecular Materials and Engineering, 2017, 302, 1700243.	1.7	10
59	Spatiotemporal Control of Doxorubicin Delivery from "Stealth-Like―Prodrug Micelles. International Journal of Molecular Sciences, 2017, 18, 2033.	1.8	4
60	Temporal Control of Membrane Fusion through Photolabile PEGylation of Liposome Membranes. Angewandte Chemie, 2016, 128, 1418-1422.	1.6	8
61	Application of Coiled Coil Peptides in Liposomal Anticancer Drug Delivery Using a Zebrafish Xenograft Model. ACS Nano, 2016, 10, 7428-7435.	7.3	66
62	Imaging Upconverting Polymersomes in Cancer Cells: Biocompatible Antioxidants Brighten Triplet–Triplet Annihilation Upconversion. Small, 2016, 12, 5579-5590.	5.2	66
63	Graphene-stabilized lipid monolayer heterostructures: a novel biomembrane superstructure. Nanoscale, 2016, 8, 18646-18653.	2.8	18
64	Drug Delivery via Cell Membrane Fusion Using Lipopeptide Modified Liposomes. ACS Central Science, 2016, 2, 621-630.	5.3	163
65	Geometry of the Contact Zone between Fused Membrane-Coated Beads Mimicking Cell-Cell Fusion. Biophysical Journal, 2016, 110, 2216-2228.	0.2	3
66	A Coiled-Coil Peptide Shaping Lipid Bilayers upon Fusion. Biophysical Journal, 2016, 111, 2162-2175.	0.2	36
67	Mesoporous Silica Nanoparticles with Large Pores for the Encapsulation and Release of Proteins. ACS Applied Materials & Samp; Interfaces, 2016, 8, 32211-32219.	4.0	111
68	Probing the Active Site of an Azurin Mutant Hot-Wired to Gold Electrodes. Journal of Physical Chemistry C, 2016, 120, 7639-7645.	1.5	9
69	Temporal Control of Membrane Fusion through Photolabile PEGylation of Liposome Membranes. Angewandte Chemie - International Edition, 2016, 55, 1396-1400.	7.2	58
70	Targeted anion transporter delivery by coiled-coil driven membrane fusion. Chemical Science, 2016, 7, 1768-1772.	3.7	44
71	A non-zipper-like tetrameric coiled coil promotes membrane fusion. RSC Advances, 2016, 6, 7990-7998.	1.7	21
72	Coiled coil interactions for the targeting of liposomes for nucleic acid delivery. Nanoscale, 2016, 8, 8955-8965.	2.8	30

#	Article	IF	CITATIONS
73	Resolving single membrane fusion events on planar pore-spanning membranes. Scientific Reports, 2015, 5, 12006.	1.6	39
74	Visualization and Quantification of Transmembrane Ion Transport into Giant Unilamellar Vesicles. Angewandte Chemie - International Edition, 2015, 54, 2137-2141.	7.2	37
7 5	Conductance Switching and Organization of Two Structurally Related Molecular Wires on Gold. Langmuir, 2015, 31, 953-958.	1.6	4
76	Bioinspired Magnetite Crystallization Directed by Random Copolypeptides. Advanced Functional Materials, 2015, 25, 711-719.	7.8	32
77	Imaging the lipid bilayer of giant unilamellar vesicles using red-to-blue light upconversion. Chemical Communications, 2015, 51, 9137-9140.	2.2	41
78	Determination of oligomeric states of peptide complexes using thermal unfolding curves. Biopolymers, 2015, 104, 65-72.	1.2	11
79	Interplay between Lipid Interaction and Homo-coiling of Membrane-Tethered Coiled-Coil Peptides. Langmuir, 2015, 31, 9953-9964.	1.6	30
80	Probing coiled-coil assembly by paramagnetic NMR spectroscopy. Organic and Biomolecular Chemistry, 2015, 13, 1159-1168.	1.5	17
81	Clickable Mesoporous Silica via Functionalization with 1,ï‰â€Alkenes. Advanced Materials Interfaces, 2014, 1, 1300061.	1.9	4
82	Assembly into βâ€Sheet Structures upon Peptide–Liposome Conjugation through Copper(I)â€Catalyzed [3+2] Azide–Alkyne Cycloaddition. ChemPlusChem, 2014, 79, 564-568.	1.3	1
83	Coiled coil driven membrane fusion between cyclodextrin vesicles and liposomes. Soft Matter, 2014, 10, 9746-9751.	1.2	16
84	Binding of a Ruthenium Complex to a Thioether Ligand Embedded in a Negatively Charged Lipid Bilayer: A Twoâ€Step Mechanism. Chemistry - A European Journal, 2014, 20, 7429-7438.	1.7	9
85	Peptide Amphiphile Nanoparticles Enhance the Immune Response Against a CpGâ€Adjuvanted Influenza Antigen. Advanced Healthcare Materials, 2014, 3, 343-348.	3.9	10
86	Preparation of size tunable giant vesicles from cross-linked dextran(ethylene glycol) hydrogels. Chemical Communications, 2014, 50, 1953-1955.	2.2	56
87	Library of Random Copolypeptides by Solid Phase Synthesis. Biomacromolecules, 2014, 15, 3687-3695.	2.6	9
88	Membrane Interactions of Fusogenic Coiled-Coil Peptides: Implications for Lipopeptide Mediated Vesicle Fusion. Langmuir, 2014, 30, 7724-7735.	1.6	46
89	Thiolated human serum albumin cross-linked dextran hydrogels as a macroscale delivery system. Soft Matter, 2014, 10, 4869-4874.	1.2	16
90	Nanolayered chemical modification of silicon surfaces with ionizable surface groups for pH-triggered protein adsorption and release: application to microneedles. Journal of Materials Chemistry B, 2013, 1, 4466.	2.9	26

#	Article	IF	Citations
91	Coiled-coil peptide motifs as thermoresponsive valves for mesoporous silica nanoparticles. Chemical Communications, 2013, 49, 9932.	2.2	49
92	Controlling the rate of coiled coil driven membrane fusion. Chemical Communications, 2013, 49, 3649.	2.2	48
93	Controlled liposome fusion mediated by SNARE protein mimics. Biomaterials Science, 2013, 1, 1046.	2.6	46
94	Coiled-coil driven membrane fusion: zipper-like vs. non-zipper-like peptide orientation. Faraday Discussions, 2013, 166, 349.	1.6	17
95	In Situ Modification of Plain Liposomes with Lipidated Coiled Coil Forming Peptides Induces Membrane Fusion. Journal of the American Chemical Society, 2013, 135, 8057-8062.	6.6	105
96	Poly(propylene imine) dendrimer caps on mesoporous silica nanoparticles for redox-responsive release: smaller is better. Physical Chemistry Chemical Physics, 2013, 15, 10740.	1.3	59
97	Folic Acidâ€Modified Mesoporous Silica Nanoparticles for Cellular and Nuclear Targeted Drug Delivery. Advanced Healthcare Materials, 2013, 2, 281-286.	3.9	132
98	In Vitro and In Vivo Supramolecular Modification of Biomembranes Using a Lipidated Coiled oil Motif. Angewandte Chemie - International Edition, 2013, 52, 14247-14251.	7.2	54
99	Colloidosomes as Single Implantable Beads for the In Vivo Delivery of Hydrophobic Drugs. Particle and Particle Systems Characterization, 2013, 30, 606-613.	1.2	17
100	Adjuvant Effect of Cationic Liposomes for Subunit Influenza Vaccine: Influence of Antigen Loading Method, Cholesterol and Immune Modulators. Pharmaceutics, 2013, 5, 392-410.	2.0	51
101	Immobilization of Liposomes and Vesicles on Patterned Surfaces by a Peptide Coiled oil Binding Motif. Angewandte Chemie - International Edition, 2012, 51, 12616-12620.	7.2	26
102	Polycyclic Aromatic Hydrocarbons as Plausible Prebiotic Membrane Components. Origins of Life and Evolution of Biospheres, 2012, 42, 295-306.	0.8	55
103	Fluorescent Nanoparticle Adhesion Assay: a Novel Method for Surface p <i>K</i> _a Determination of Self-Assembled Monolayers on Silicon Surfaces. Langmuir, 2012, 28, 3403-3411.	1.6	36
104	Cationic liposomes as adjuvants for influenza hemagglutinin: More than charge alone. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 81, 294-302.	2.0	44
105	Polymer-induced liquid precursor (PILP) phases of calcium carbonate formed in the presence of synthetic acidic polypeptidesâ€"relevance to biomineralization. Faraday Discussions, 2012, 159, 327.	1.6	47
106	Mesoporous silica nanoparticles as a compound delivery system in zebrafish embryos. International Journal of Nanomedicine, 2012, 7, 1875.	3.3	51
107	Power struggles between oligopeptides and cyclodextrin vesicles. Soft Matter, 2012, 8, 8770.	1.2	12
108	Influence of pegylation on peptide-mediated liposome fusion. Journal of Materials Chemistry, 2011, 21, 18927.	6.7	31

#	Article	IF	Citations
109	Polymersomes enhance the immunogenicity of influenza subunit vaccine. Polymer Chemistry, 2011, 2, 1482.	1.9	23
110	Dextran based photodegradable hydrogels formed via a Michael addition. Soft Matter, 2011, 7, 4881.	1.2	113
111	Model systems for membrane fusion. Chemical Society Reviews, 2011, 40, 1572-1585.	18.7	152
112	Peptide modified mesoporous silica nanocontainers. Physical Chemistry Chemical Physics, 2011, 13, 9982.	1.3	44
113	Hydrogel-based drug carriers for controlled release of hydrophobic drugs and proteins. Journal of Controlled Release, 2011, 152, e72-e74.	4.8	6
114	Photoresponsive hydrogels for biomedical applications. Advanced Drug Delivery Reviews, 2011, 63, 1257-1266.	6.6	446
115	Supramolecular triblock copolymers controlled by the coiled-coil motif: A new tool for drug delivery. Journal of Controlled Release, 2010, 148, e110-e111.	4.8	0
116	Selfâ€Assembly of Coiled Coils in Synthetic Biology: Inspiration and Progress. Angewandte Chemie - International Edition, 2010, 49, 2988-3005.	7.2	135
117	Introducing Quadrupole Interactions into the Peptide Design Toolkit. Angewandte Chemie - International Edition, 2010, 49, 8570-8572.	7.2	22
118	The Microtubule Regulator Stathmin Is an Endogenous Protein Agonist for TLR3. Journal of Immunology, 2010, 184, 6929-6937.	0.4	76
119	Cyclodextrin–dextran based in situ hydrogel formation: a carrier for hydrophobic drugs. Soft Matter, 2010, 6, 85-87.	1.2	79
120	Large Amplitude Conductance Gating in a Wired Redox Molecule. Journal of Physical Chemistry Letters, 2010, 1, 1541-1546.	2.1	16
121	Uniting Polypeptides with Sequence-Designed Peptides: Synthesis and Assembly of Poly(\hat{I}^3 -benzyl) Tj ETQq1 1 0.7 2370-2377.	784314 rg 6.6	gBT /Overlock 57
122	Power struggles in peptide-amphiphile nanostructures. Chemical Society Reviews, 2010, 39, 3434.	18.7	131
123	Detergent-Aided Polymersome Preparation. Biomacromolecules, 2010, 11, 833-838.	2.6	26
124	Rapid preparation of polymersomes by a water addition/solvent evaporation method. Polymer Chemistry, 2010, 1, 1512.	1.9	72
125	Amphiphilic peptides and their cross-disciplinary role as building blocks for nanoscience. Chemical Society Reviews, 2010, 39, 241-263.	18.7	236
126	Cyclodextrin/dextran based drug carriers for a controlled release of hydrophobic drugs in zebrafish embryos. Soft Matter, 2010, 6, 3778.	1.2	39

#	Article	IF	CITATIONS
127	Light controlled protein release from a supramolecular hydrogel. Chemical Communications, 2010, 46, 4094.	2.2	229
128	Zebrafish development and regeneration: new tools for biomedical research. International Journal of Developmental Biology, 2009, 53, 835-850.	0.3	143
129	Polymerâ€Peptide Block Copolymers – An Overview and Assessment of Synthesis Methods. Macromolecular Bioscience, 2009, 9, 939-951.	2.1	55
130	Macromol. Biosci. 10/2009. Macromolecular Bioscience, 2009, 9, .	2.1	0
131	A Reduced SNARE Model for Membrane Fusion. Angewandte Chemie - International Edition, 2009, 48, 2330-2333.	7.2	145
132	Shape and Release Control of a Peptide Decorated Vesicle through pH Sensitive Orthogonal Supramolecular Interactions. Journal of the American Chemical Society, 2009, 131, 13186-13187.	6.6	158
133	Scope and Applications of Amphiphilic Alkyl―and Lipopeptides. Advanced Materials, 2008, 20, 627-631.	11.1	32
134	Noncovalent Triblock Copolymers Based on a Coiled-Coil Peptide Motif. Journal of the American Chemical Society, 2008, 130, 9386-9393.	6.6	85
135	The chemical modification of liposome surfaces via a copper-mediated [3 + 2] azide–alkyne cycloaddition monitored by a colorimetric assay. Chemical Communications, 2006, , 3193-3195.	2.2	83
136	Two-Dimensional Ordered \hat{l}^2 -Sheet Lipopeptide Monolayers. Journal of the American Chemical Society, 2006, 128, 13959-13966.	6.6	33
137	Self-Organizing \hat{I}^2 -Sheet Lipopeptide Monolayers as Template for the Mineralization of CaCO3. Angewandte Chemie - International Edition, 2006, 45, 739-744.	7.2	67
138	Cover Picture: Self-Organizing Î ² -Sheet Lipopeptide Monolayers as Template for the Mineralization of CaCO3 (Angew. Chem. Int. Ed. 5/2006). Angewandte Chemie - International Edition, 2006, 45, 677-677.	7.2	1
139	Poly(pyrrole) versus poly(3,4-ethylenedioxythiophene): implications for biosensor applications. Sensors and Actuators B: Chemical, 2005, 106, 289-295.	4.0	117
140	Synthesis and Self-Assembly of Rod-Rod Hybrid Poly(γ-benzylL-glutamate)-block-Polyisocyanide Copolymers. Angewandte Chemie - International Edition, 2005, 44, 4349-4352.	7.2	78
141	Electroformed Giant Vesicles from Thiophene-Containing Rodâ^'Coil Diblock Copolymers. Macromolecules, 2004, 37, 4736-4739.	2.2	67
142	Silane-based hybrids for biomedical applications. Journal of Adhesion Science and Technology, 2002, 16, 143-155.	1.4	21
143	Poly(3,4-ethylenedioxythiophene)-based copolymers for biosensor applications. Journal of Polymer Science Part A, 2002, 40, 738-747.	2.5	58
144	A printable glucose sensor based on a poly(pyrrole)-latex hybrid material. Sensors and Actuators B: Chemical, 2001, 80, 229-233.	4.0	26

ALEXANDER KROS

#	Article	IF	CITATIONS
145	Biocompatible polystyrenes containing pendant tetra(ethylene glycol) and phosphorylcholine groups. Journal of Polymer Science Part A, 2001, 39, 468-474.	2.5	22
146	A percutaneous device as model to study the in vivo performance of implantable amperometric glucose sensors. Journal of Materials Science: Materials in Medicine, 2001, 12, 129-134.	1.7	12
147	Silica-based hybrid materials as biocompatible coatings for glucose sensors. Sensors and Actuators B: Chemical, 2001, 81, 68-75.	4.0	87
148	Biocompatibility evaluation of sol–gel coatings for subcutaneously implantable glucose sensors. Biomaterials, 2000, 21, 71-78.	5.7	77
149	Performance of Subcutaneously Implanted Glucose Sensors: A Review. Journal of Investigative Surgery, 1998, 11, 163-174.	0.6	63