Elizabeth Gillies

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4302810/publications.pdf Version: 2024-02-01

FUZABETH CILLIES

#	Article	IF	CITATIONS
1	Dendrimers and dendritic polymers in drug delivery. Drug Discovery Today, 2005, 10, 35-43.	3.2	1,247
2	A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16649-16654.	3.3	611
3	Stimuli-Responsive Supramolecular Assemblies of Linear-Dendritic Copolymers. Journal of the American Chemical Society, 2004, 126, 11936-11943.	6.6	533
4	pH-Responsive Copolymer Assemblies for Controlled Release of Doxorubicin. Bioconjugate Chemistry, 2005, 16, 361-368.	1.8	506
5	Designing Macromolecules for Therapeutic Applications:Â Polyester DendrimerPoly(ethylene oxide) "Bow-Tie―Hybrids with Tunable Molecular Weight and Architecture. Journal of the American Chemical Society, 2002, 124, 14137-14146.	6.6	313
6	Acetals as pH-Sensitive Linkages for Drug Delivery. Bioconjugate Chemistry, 2004, 15, 1254-1263.	1.8	280
7	Biological Evaluation of Polyester Dendrimer:  Poly(ethylene oxide) "Bow-Tie―Hybrids with Tunable Molecular Weight and Architecture. Molecular Pharmaceutics, 2005, 2, 129-138.	2.3	245
8	A new approach towards acid sensitive copolymer micelles for drug delivery. Chemical Communications, 2003, , 1640-1641.	2.2	240
9	Curcumin, a promising anti-cancer therapeutic: a review of its chemical properties, bioactivity and approaches to cancer cell delivery. RSC Advances, 2014, 4, 10815.	1.7	193
10	Macrocyclic and Helical Oligoamides as a New Class of G-Quadruplex Ligands. Journal of the American Chemical Society, 2007, 129, 11890-11891.	6.6	159
11	Non-covalently functionalized single-walled carbon nanotube for topical siRNA delivery into melanoma. Biomaterials, 2014, 35, 3435-3442.	5.7	145
12	A Cascade Biodegradable Polymer Based on Alternating Cyclization and Elimination Reactions. Journal of the American Chemical Society, 2009, 131, 18327-18334.	6.6	138
13	Amplified release through the stimulus triggered degradation of self-immolative oligomers, dendrimers, and linear polymers. Advanced Drug Delivery Reviews, 2012, 64, 1031-1045.	6.6	135
14	Polyglyoxylates: A Versatile Class of Triggerable Self-Immolative Polymers from Readily Accessible Monomers. Journal of the American Chemical Society, 2014, 136, 10116-10123.	6.6	130
15	Enhanced Cell Uptake of Superparamagnetic Iron Oxide Nanoparticles Functionalized with Dendritic Guanidines. Bioconjugate Chemistry, 2008, 19, 2375-2384.	1.8	121
16	Development of acid-sensitive copolymer micelles for drug delivery. Pure and Applied Chemistry, 2004, 76, 1295-1307.	0.9	115
17	Triggering Depolymerization: Progress and Opportunities for Self-Immolative Polymers. Macromolecules, 2019, 52, 6342-6360.	2.2	107
18	Surface Functionalization of Nanomaterials with Dendritic Groups: Toward Enhanced Binding to Biological Targets. Journal of the American Chemical Society, 2009, 131, 734-741.	6.6	105

#	Article	IF	CITATIONS
19	Development and Biological Assessment of Fully Water-Soluble Helical Aromatic Amide Foldamers. Angewandte Chemie - International Edition, 2007, 46, 4081-4084.	7.2	95
20	Antibacterial Activity of Polymers: Discussions on the Nature of Amphiphilic Balance. Angewandte Chemie - International Edition, 2019, 58, 3690-3693.	7.2	90
21	Surprising Antibacterial Activity and Selectivity of Hydrophilic Polyphosphoniums Featuring Sugar and Hydroxy Substituents. Angewandte Chemie - International Edition, 2018, 57, 12707-12710.	7.2	73
22	Raman Enhancement of Azobenzene Monolayers on Substrates Prepared by Langmuirâ^'Blodgett Deposition and Electron-Beam Lithography Techniques. Langmuir, 2008, 24, 11313-11321.	1.6	71
23	Self-Immolative Polymers Containing Rapidly Cyclizing Spacers: Toward Rapid Depolymerization Rates. Macromolecules, 2012, 45, 7364-7374.	2.2	70
24	Directed Antigen Presentation Using Polymeric Microparticulate Carriers Degradable at Lysosomal pH for Controlled Immune Responses. Molecular Pharmaceutics, 2005, 2, 83-91.	2.3	64
25	A reduction sensitive cascade biodegradable linear polymer. Journal of Polymer Science Part A, 2010, 48, 3977-3985.	2.5	64
26	Kinetics of Self-Immolative Degradation in a Linear Polymeric System: Demonstrating the Effect of Chain Length. Macromolecules, 2013, 46, 5157-5166.	2.2	62
27	Phosphonium-Functionalized Polymer Micelles with Intrinsic Antibacterial Activity. Biomacromolecules, 2017, 18, 914-923.	2.6	58
28	Poly(ethyl glyoxylate)-Poly(ethylene oxide) Nanoparticles: Stimuli-Responsive Drug Release via End-to-End Polyglyoxylate Depolymerization. Molecular Pharmaceutics, 2017, 14, 2548-2559.	2.3	56
29	Microencapsulation by <i>in situ</i> Polymerization of Amino Resins. Polymer Reviews, 2018, 58, 326-375.	5.3	55
30	Strategies in Functional Poly(ester amide) Syntheses to Study Human Coronary Artery Smooth Muscle Cell Interactions. Biomacromolecules, 2011, 12, 2475-2487.	2.6	54
31	Synthesis and Self-Assembly of Supramolecular Dendritic "Bow-Tiesâ€ı  Effect of Peripheral Functionality on Association Constants. Journal of Organic Chemistry, 2004, 69, 46-53.	1.7	52
32	End-Capping Strategies for Triggering End-to-End Depolymerization of Polyglyoxylates. Macromolecules, 2016, 49, 9309-9319.	2.2	51
33	Amphipathic Helices from Aromatic Amino Acid Oligomers. Journal of Organic Chemistry, 2006, 71, 7931-7939.	1.7	47
34	Polymer cross-linking: a nanogel approach to enhancing the relaxivity of MRI contrast agents. Journal of Materials Chemistry B, 2013, 1, 1027-1034.	2.9	46
35	Syntheses, characterization, and functionalization of poly(ester amide)s with pendant amine functional groups. Journal of Polymer Science Part A, 2008, 46, 6376-6392.	2.5	43
36	Preparation of antibacterial surfaces by hyperthermal hydrogen induced cross-linking of polymer thin films. Journal of Materials Chemistry, 2012, 22, 4881.	6.7	43

#	Article	IF	CITATIONS
37	Polymer Network Formation Using the Phosphane–ene Reaction: A Thiol–ene Analogue with Diverse Postpolymerization Chemistry. Chemistry of Materials, 2015, 27, 1412-1419.	3.2	43
38	Biomimetic l-aspartic acid-derived functional poly(ester amide)s for vascular tissue engineering. Acta Biomaterialia, 2014, 10, 3484-3496.	4.1	42
39	Thermo-responsive self-immolative nanoassemblies: direct and indirect triggering. Chemical Communications, 2017, 53, 12068-12071.	2.2	40
40	A versatile approach for the syntheses of poly(ester amide)s with pendant functional groups. Journal of Polymer Science Part A, 2009, 47, 3757-3772.	2.5	39
41	Dendritic Guanidines as Efficient Analogues of Cell Penetrating Peptides. Pharmaceuticals, 2010, 3, 636-666.	1.7	39
42	Triggered degradation of poly(ester amide)s via cyclization of pendant functional groups of amino acid monomers. Polymer Chemistry, 2013, 4, 1969.	1.9	38
43	Functional aqueous assemblies of linearâ€dendron hybrids. Journal of Polymer Science Part A, 2015, 53, 148-172.	2.5	38
44	Photocontrolled Degradation of Stimuli-Responsive Poly(ethyl glyoxylate): Differentiating Features and Traceless Ambient Depolymerization. Macromolecules, 2016, 49, 7196-7203.	2.2	38
45	Self-Healing Polyphosphonium Ionic Networks. Macromolecules, 2017, 50, 5253-5260.	2.2	37
46	Polyglyoxylamides: Tuning Structure and Properties of Self-Immolative Polymers. Macromolecules, 2019, 52, 262-270.	2.2	37
47	Design, synthesis, and cyclization of 4-aminobutyric acid derivatives: potential candidates as self-immolative spacers. Organic and Biomolecular Chemistry, 2011, 9, 1846.	1.5	36
48	Multifunctional Dendritic Sialopolymersomes as Potential Antiviral Agents: Their Lectin Binding and Drug Release Properties. Langmuir, 2013, 29, 6420-6428.	1.6	36
49	Controlling Endosomal Escape Using pH-Responsive Nanoparticles with Tunable Disassembly. ACS Applied Nano Materials, 2018, 1, 3164-3173.	2.4	36
50	Single-Walled Carbon Nanotubes Noncovalently Functionalized with Lipid Modified Polyethylenimine for siRNA Delivery <i>in Vitro</i> and <i>in Vivo</i> . Bioconjugate Chemistry, 2014, 25, 1744-1751.	1.8	34
51	Multiresponsive Azobenzene End-Cap for Self-Immolative Polymers. ACS Macro Letters, 2014, 3, 1191-1195.	2.3	32
52	Versatile strained alkyne modified water-soluble AuNPs for interfacial strain promoted azide–alkyne cycloaddition (I-SPAAC). Journal of Materials Chemistry B, 2014, 2, 1764-1769.	2.9	32
53	Curcumin-loaded, folic acid-functionalized magnetite particles for targeted drug delivery. RSC Advances, 2015, 5, 37521-37532.	1.7	31
54	Synthesis, properties, and antibacterial activity of polyphosphonium semi-interpenetrating networks. Journal of Materials Chemistry B, 2016, 4, 4872-4883.	2.9	31

#	Article	IF	CITATIONS
55	Controlled positioning of analytes and cells on a plasmonic platform for glycan sensing using surface enhanced Raman spectroscopy. Chemical Science, 2016, 7, 575-582.	3.7	31
56	Antibacterial Activity of Polymers: Discussions on the Nature of Amphiphilic Balance. Angewandte Chemie, 2019, 131, 3728-3731.	1.6	29
57	Patterning of a Butyl Rubberâ ``Poly(ethylene oxide) Graft Copolymer Revealed by Protein Adsorption. Macromolecules, 2010, 43, 9230-9233.	2.2	28
58	Rubber Functionalization by Diels–Alder Chemistry: From Cross-Linking to Multifunctional Graft Copolymer Synthesis. Macromolecules, 2013, 46, 6024-6030.	2.2	28
59	Seasonal accumulation of acetylated triacylglycerols by a freeze-tolerant insect. Journal of Experimental Biology, 2014, 217, 1580-1587.	0.8	28
60	Poly(ester amide)s with pendant azobenzenes: multi-responsive self-immolative moieties for modulating polymer assemblies. Polymer Chemistry, 2016, 7, 1871-1881.	1.9	28
61	Controlled Polymerization of Ethyl Glyoxylate Using Alkyllithium and Alkoxide Initiators. Macromolecules, 2018, 51, 5501-5510.	2.2	27
62	Development of Fertilizer Coatings from Polyglyoxylate–Polyester Blends Responsive to Root-Driven pH Change. Journal of Agricultural and Food Chemistry, 2019, 67, 12720-12729.	2.4	27
63	The architectural evolution of self-immolative polymers. Polymer, 2020, 202, 122638.	1.8	27
64	Investigating the Effects of Tissue-Specific Extracellular Matrix on the Adipogenic and Osteogenic Differentiation of Human Adipose-Derived Stromal Cells Within Composite Hydrogel Scaffolds. Frontiers in Bioengineering and Biotechnology, 2019, 7, 402.	2.0	25
65	Synthesis and Degradation of Backbone Photodegradable Polyester Dendrimers. Organic Letters, 2013, 15, 1830-1833.	2.4	24
66	Contact active antibacterial phosphonium coatings cured with UV light. Journal of Materials Chemistry B, 2015, 3, 1474-1478.	2.9	24
67	Thermosensitive polymer-grafted iron oxide nanoparticles studied by <i>in situ</i> dynamic light backscattering under magnetic hyperthermia. Journal Physics D: Applied Physics, 2015, 48, 494001.	1.3	23
68	Tuning the hydrophobic cores of self-immolative polyglyoxylate assemblies. Polymer Chemistry, 2018, 9, 2601-2610.	1.9	22
69	Synthesis and Assembly of Butyl Rubber–Poly(ethylene oxide) Graft Copolymers: From Surface Patterning to Resistance to Protein Adsorption. Macromolecules, 2011, 44, 6405-6415.	2.2	21
70	Preparation of Protein- and Cell-Resistant Surfaces by Hyperthermal Hydrogen Induced Cross-Linking of Poly(ethylene oxide). ACS Applied Materials & Interfaces, 2011, 3, 1740-1748.	4.0	21
71	Fluorinated polymerizable phosphonium salts from PH ₃ : Surface properties of photopolymerized films. Journal of Polymer Science Part A, 2013, 51, 2782-2792.	2.5	21
72	Structure–Property Relationships for a Series of Poly(ester amide)s Containing Amino Acids. Industrial & Engineering Chemistry Research, 2014, 53, 1452-1460.	1.8	21

#	Article	IF	CITATIONS
73	Hybrid Polyester Self-Immolative Polymer Nanoparticles for Controlled Drug Release. ACS Omega, 2018, 3, 5002-5011.	1.6	21
74	Systematic Study of Polyglyoxylamides as Powerful, High-Cloud-Point Kinetic Hydrate Inhibitors. Energy & Fuels, 2019, 33, 2067-2075.	2.5	21
75	Focal Contact Formation of Vascular Smooth Muscle Cells on Langmuir–Blodgett and Solvent-Cast Films of Biodegradable Poly(ester amide)s. ACS Applied Materials & Interfaces, 2012, 4, 1303-1312.	4.0	20
76	Dendritic surface functionalization of biodegradable polymer assemblies. Journal of Polymer Science Part A, 2011, 49, 2546-2559.	2.5	18
77	Photodegradable poly(ester amide)s for indirect light-triggered release of paclitaxel. Polymer Chemistry, 2014, 5, 7062-7071.	1.9	17
78	Carboxylic Acid-Functionalized Butyl Rubber: Synthesis, Characterization, and Physical Properties. Industrial & Engineering Chemistry Research, 2015, 54, 4763-4772.	1.8	17
79	Poly(ester amide) particles for controlled delivery of celecoxib. Journal of Biomedical Materials Research - Part A, 2019, 107, 1235-1243.	2.1	17
80	pH-Sensitive Chitosan Nanoparticles for Salivary Protein Delivery. Nanomaterials, 2021, 11, 1028.	1.9	17
81	Amphipathic β-Strand Mimics as Potential Membrane Disruptive Antibiotics. Journal of Organic Chemistry, 2009, 74, 5953-5960.	1.7	16
82	Functional Polymer Laminates from Hyperthermal Hydrogen Induced Cross-Linking. Langmuir, 2011, 27, 14820-14827.	1.6	16
83	Tuning polymersome surfaces: functionalization with dendritic groups. Soft Matter, 2012, 8, 5947.	1.2	16
84	Synthetic glycopolypeptides: synthesis and self-assembly of poly(Ĵ³-benzyl- <scp>l</scp> -glutamate)-glycosylated dendron hybrids. Polymer Chemistry, 2015, 6, 7902-7912.	1.9	16
85	Polymer Assembly Encapsulation of Lanthanide Nanoparticles as Contrast Agents for In Vivo Micro-CT. Biomacromolecules, 2018, 19, 896-905.	2.6	16
86	Depolymerization of Trityl End apped Poly(Ethyl Glyoxylate): Potential Applications in Smart Packaging. Macromolecular Rapid Communications, 2018, 39, e1800173.	2.0	16
87	Composite Bioscaffolds Incorporating Decellularized ECM as a Cell-Instructive Component Within Hydrogels as In Vitro Models and Cell Delivery Systems. Methods in Molecular Biology, 2017, 1577, 183-208.	0.4	15
88	CapturePhos – A phosphorus-rich polymer as a homogeneous catalyst scavenger. Catalysis Science and Technology, 2017, 7, 2685-2688.	2.1	15
89	Thermoresponsive and Covalently Cross-Linkable Hydrogels for Intra-Articular Drug Delivery. ACS Applied Bio Materials, 2019, 2, 3498-3507.	2.3	14
90	Selfâ€Regenerating Antimicrobial Polymer Surfaces via Multilayerâ€Design—Sequential and Triggered Layer Shedding under Physiological Conditions. Advanced Materials Interfaces, 2019, 6, 1802049.	1.9	14

#	Article	IF	CITATIONS
91	Reflections on the Evolution of Smart Polymers. Israel Journal of Chemistry, 2020, 60, 75-85.	1.0	14
92	Biodegradable dendritic polymersomes as modular, high-relaxivity MRI contrast agents. RSC Advances, 2012, 2, 7971.	1.7	13
93	Covalent Polyisobutylene–Paclitaxel Conjugates for Controlled Release from Potential Vascular Stent Coatings. ACS Applied Materials & Interfaces, 2015, 7, 14506-14517.	4.0	13
94	Kinetically Controlled Patterning of Highly Cross-Linked Phosphonium Photopolymers Using Simple Anion Exchange. Langmuir, 2015, 31, 5181-5189.	1.6	13
95	Synthesis and Characterization of a Family of Air-Stable Ferrocene- and Ruthenocene-Containing Primary, Secondary, and Tertiary Phosphines. Organometallics, 2015, 34, 4272-4280.	1.1	13
96	Poly(para-phenylene ethynylene)s functionalized with Gd(III) chelates as potential MRI contrast agents. Canadian Journal of Chemistry, 2011, 89, 47-56.	0.6	12
97	Cleaving C–H bonds with hyperthermal H ₂ : facile chemistry to cross-link organic molecules under low chemical- and energy-loads. Green Chemistry, 2014, 16, 1316-1325.	4.6	12
98	Effect of drug loading on the properties ofÂtemperatureâ€responsive polyester–poly(ethylene) Tj ETQq0 0 0 rg	gBT_/Overl	ock 10 Tf 50
99	Phosphane–ene chemistry: the reactivity of air-stable primary phosphines and their compatibility with the thiol–ene reaction. Dalton Transactions, 2015, 44, 15664-15670.	1.6	11
100	A comparison of covalent and noncovalent strategies for paclitaxel release using poly(ester amide) graft copolymer micelles. Canadian Journal of Chemistry, 2015, 93, 399-405.	0.6	11
101	Synthesis, self-assembly, and immunological activity of α-galactose-functionalized dendron–lipid amphiphiles. Nanoscale, 2016, 8, 17694-17704.	2.8	11
102	Post-polymerization functionalization of poly(ethylene oxide)–poly(β-6-heptenolactone) diblock copolymers to tune properties and self-assembly. Polymer Chemistry, 2017, 8, 557-567.	1.9	11
103	Surprising Antibacterial Activity and Selectivity of Hydrophilic Polyphosphoniums Featuring Sugar and Hydroxy Substituents. Angewandte Chemie, 2018, 130, 12889-12892.	1.6	11
104	Multiâ€stimuliâ€responsive selfâ€immolative polymer assemblies. Journal of Polymer Science Part A, 2018, 56, 1868-1877.	2.5	11
105	Synthesis and properties of butyl rubber-poly(ethylene oxide) graft copolymers with high PEO content. Journal of Polymer Science Part A, 2013, 51, 3383-3394.	2.5	10
106	Synthesis, properties and degradation of polyisobutylene-polyester graft copolymers. Polymer International, 2017, 66, 42-51.	1.6	10
107	Phosphonium Polyelectrolyte Complexes for the Encapsulation and Slow Release of Ionic Cargo. Biomacromolecules, 2020, 21, 152-162.	2.6	10
108	Transesterification of Poly(ethyl glyoxylate): A Route to Structurally Diverse Polyglyoxylates.	2.2	10

Macromolecules, 2020, 53, 8600-8609. 108

#	Article	IF	CITATIONS
109	Post-polymerization â€~click' end-capping of polyglyoxylate self-immolative polymers. Polymer Chemistry, 2021, 12, 6824-6831.	1.9	10
110	Selfâ€crosslinking borate anions for the production of tough UVâ€cured polyelectrolyte surfaces. Journal of Polymer Science Part A, 2013, 51, 499-508.	2.5	9
111	Synthesis, self-assembly, and degradation of amphiphilic triblock copolymers with fully photodegradable hydrophobic blocks. Canadian Journal of Chemistry, 2015, 93, 126-133.	0.6	9
112	The formation of gold nanoparticles in photopolymerized networks. Canadian Journal of Chemistry, 2016, 94, 476-481.	0.6	9
113	Photoinduced Degradation of Polymer Films Using Polyglyoxylate–Polyester Blends and Copolymers. ACS Omega, 2018, 3, 18603-18612.	1.6	9
114	Culture on Tissue‧pecific Coatings Derived from αâ€Amylaseâ€Digested Decellularized Adipose Tissue Enhances the Proliferation and Adipogenic Differentiation of Human Adiposeâ€Derived Stromal Cells. Biotechnology Journal, 2020, 15, 1900118.	1.8	9
115	Polymer particles for the intra-articular delivery of drugs to treat osteoarthritis. Biomedical Materials (Bristol), 2021, 16, 042006.	1.7	9
116	PEG-modified gadolinium nanoparticles as contrast agents for in vivo micro-CT. Scientific Reports, 2021, 11, 16603.	1.6	9
117	Fabrication and In Situ Cross-Linking of Carboxylic-Acid-Functionalized Poly(Ester Amide) Scaffolds for Tissue Engineering. ACS Applied Polymer Materials, 2019, 1, 2360-2369.	2.0	8
118	Acid-Responsive Poly(glyoxylate) Self-Immolative Star Polymers. Biomacromolecules, 2021, 22, 3892-3900.	2.6	8
119	Synthesis and application of cinnamate-functionalized rubber for the preparation of UV-curable films. European Polymer Journal, 2013, 49, 4238-4248.	2.6	7
120	Thermoresponsive Self-Immolative Polyglyoxylamides. Biomacromolecules, 2020, 21, 3817-3825.	2.6	7
121	Polyesters based on aspartic acid and poly(ethylene glycol): Functional polymers for hydrogel preparation. European Polymer Journal, 2021, 152, 110456.	2.6	7
122	Polyglyoxylamides with a pH-Mediated Solubility and Depolymerization Switch. Macromolecules, 2021, 54, 10547-10556.	2.2	7
123	Self-immolative Amphiphilic Diblock Copolymers with Individually Triggerable Blocks. ACS Polymers Au, 2022, 2, 313-323.	1.7	7
124	Synthesis and properties of arborescent polyisobutyleneâ€poly(ethylene oxide) graft copolymers: a comparison of linear and arborescent graft copolymer architectures. Polymer International, 2015, 64, 611-620.	1.6	6
125	Phosphonium hydrogels for controlled release of ionic cargo. Chemical Communications, 2018, 54, 11164-11167.	2.2	6
126	Neutral, water-soluble poly(ester amide) hydrogels for cell encapsulation. European Polymer Journal, 2020, 136, 109899.	2.6	6

#	ARTICLE	IF	CITATIONS
127	Self-Assembly of Supramolecular Polymers from β-Strand Peptidomimeticâ^'Poly(ethylene oxide) Hybrids. Macromolecules, 2010, 43, 4453-4459.	2.2	5
128	Synthesis and functionalization of polymer networks via germane–ene chemistry. Polymer Chemistry, 2017, 8, 3425-3430.	1.9	5
129	Effect of Counterions on the Self-Assembly of Polystyrene–Polyphosphonium Block Copolymers. Langmuir, 2017, 33, 14738-14747.	1.6	5
130	GSK3787-Loaded Poly(Ester Amide) Particles for Intra-Articular Drug Delivery. Polymers, 2020, 12, 736.	2.0	5
131	Self-immolative dendron hydrogels. Chemical Communications, 2021, 57, 11072-11075.	2.2	5
132	Design, Synthesis and Assembly of Self-Immolative Linear Block Copolymers. ACS Symposium Series, 2011, , 9-21.	0.5	4
133	Synthesis and properties of arborescent polyisobutylene derivatives and a paclitaxel conjugate: Towards stent coatings with prolonged drug release. European Polymer Journal, 2015, 72, 148-162.	2.6	4
134	Polyelectrolyte Coatings Can Control Charged Fluorocarbon Nanodroplet Stability and Their Interaction with Macrophage Cells. Langmuir, 2019, 35, 4603-4612.	1.6	4
135	Evaluation of pH-dependent amphiphilic carbosilane dendrons in micelle formation, drug loading and HIV-1 infection. Organic and Biomolecular Chemistry, 2020, 18, 9639-9652.	1.5	4
136	Covalent drug immobilization in poly(ester amide) nanoparticles for controlled release. Canadian Journal of Chemical Engineering, 2015, 93, 2098-2106.	0.9	3
137	Phosphonium versus Ammonium Compact Polyelectrolyte Complex Networks with Alginate—Comparing Their Properties and Cargo Encapsulation. Langmuir, 2020, 36, 8253-8264.	1.6	3
138	Self-immolative polyplexes for DNA delivery. Biomaterials Science, 2022, 10, 2557-2567.	2.6	3
139	Polyisobutyleneâ€paclitaxel conjugates with pendant carboxylic acids and polystyrene chains: Towards multifunctional stent coatings with slow drug release. Journal of Polymer Science Part A, 2016, 54, 2209-2219.	2.5	2
140	High-concentration gadolinium nanoparticles for pre-clinical vascular imaging. , 2018, , .		1
141	An oxygenated rubber derivative as a compatibilizer for the preparation of polymer films. Journal of Coatings Technology Research, 2013, 10, 733-742.	1.2	0