
Beatriz de las Heras

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/43025/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dehydroisohispanolone as a Promising NLRP3 Inhibitor Agent: Bioevaluation and Molecular Docking. Pharmaceuticals, 2022, 15, 825.	1.7	5
2	Current status of terpenoids as inflammasome inhibitors. Biochemical Pharmacology, 2020, 172, 113739.	2.0	18
3	Dehydrohispanolone Derivatives Attenuate the Inflammatory Response through the Modulation of Inflammasome Activation. Journal of Natural Products, 2020, 83, 2155-2164.	1.5	4
4	α-Hispanolol Induces Apoptosis and Suppresses Migration and Invasion of Glioblastoma Cells Likely via Downregulation of MMP-2/9 Expression and p38MAPK Attenuation. Frontiers in Pharmacology, 2019, 10, 935.	1.6	11
5	Molecular Targets Involved in the Neuroprotection Mediated by Terpenoids. Planta Medica, 2019, 85, 1304-1315.	0.7	16
6	Metal Complexes of Natural Product Like-compounds with Antitumor Activity. Anti-Cancer Agents in Medicinal Chemistry, 2019, 19, 48-65.	0.9	15
7	GQ-11: A new PPAR agonist improves obesity-induced metabolic alterations in LDLrâ^'/â^' mice. International Journal of Obesity, 2018, 42, 1062-1072.	1.6	15
8	Semisynthesis and Inhibitory Effects of Solidagenone Derivatives on TLR-Mediated Inflammatory Responses. Molecules, 2018, 23, 3197.	1.7	15
9	Novel Nano-Liposome Formulation for Dry Eyes with Components Similar to the Preocular Tear Film. Polymers, 2018, 10, 425.	2.0	28
10	A hispanolone-derived diterpenoid inhibits M2-Macrophage polarization in vitro via JAK/STAT and attenuates chitin induced inflammation in vivo. Biochemical Pharmacology, 2018, 154, 373-383.	2.0	32
11	Novel Water-Soluble Mucoadhesive Carbosilane Dendrimers for Ocular Administration. Molecular Pharmaceutics, 2016, 13, 2966-2976.	2.3	50
12	8,9-Dehydrohispanolone-15,16-lactol diterpene prevents LPS-triggered inflammatory responses by inhibiting endothelial activation. Biochemical Journal, 2016, 473, 2061-2071.	1.7	7
13	New PPARÎ ³ partial agonist improves obesity-induced metabolic alterations and atherosclerosis in LDLrâ^'/â~' mice. Pharmacological Research, 2016, 104, 49-60.	3.1	26
14	A labdane diterpene exerts ex vivo and in vivo cardioprotection against post-ischemic injury: Involvement of AKT-dependent mechanisms. Biochemical Pharmacology, 2015, 93, 428-439.	2.0	10
15	α-Hispanolol sensitizes hepatocellular carcinoma cells to TRAIL-induced apoptosis via death receptor up-regulation. Toxicology and Applied Pharmacology, 2015, 286, 168-177.	1.3	9
16	Novel biodegradable polyesteramide microspheres for controlled drug delivery in Ophthalmology. Journal of Controlled Release, 2015, 211, 105-117.	4.8	85
17	Anti-inflammatory activity and phenolic profile of propolis from two locations in Región Metropolitana de Santiago, Chile. Journal of Ethnopharmacology, 2015, 168, 37-44.	2.0	50
18	New indole-thiazolidine attenuates atherosclerosis in LDLrâ^'/â^' mice. Vascular Pharmacology, 2015, 71, 174-180.	1.0	9

BEATRIZ DE LAS HERAS

#	Article	IF	CITATIONS
19	Biological evaluation of angular disubstituted naphthoimidazoles as anti-inflammatory agents. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4210-4213.	1.0	3
20	Design and Characterization of an Ocular Topical Liposomal Preparation to Replenish the Lipids of the Tear Film. Investigative Ophthalmology and Visual Science, 2014, 55, 7839-7847.	3.3	42
21	Critical role of the death receptor pathway in the antitumoral effects induced by hispanolone derivatives. Oncogene, 2013, 32, 259-268.	2.6	15
22	Synthesis and cytotoxic activity of metallic complexes of lawsone. Bioorganic and Medicinal Chemistry, 2013, 21, 2471-2477.	1.4	44
23	Labdanolic acid methyl ester (LAME) exerts anti-inflammatory effects through inhibition of TAK-1 activation. Toxicology and Applied Pharmacology, 2012, 258, 109-117.	1.3	16
24	The Use of Mucoadhesive Polymers to Enhance the Hypotensive Effect of a Melatonin Analogue, 5-MCA-NAT, in Rabbit Eyes. , 2011, 52, 1507.		21
25	Synthesis and anti-inflammatory activity of ent-kaurene derivatives. European Journal of Medicinal Chemistry, 2011, 46, 1291-1305.	2.6	22
26	Labdane diterpenes protect against anoxia/reperfusion injury in cardiomyocytes: involvement of AKT activation. Cell Death and Disease, 2011, 2, e229-e229.	2.7	34
27	Anti-Inflammatory and Antioxidant Properties of a New Arylidene-Thiazolidinedione in Macrophages. Current Medicinal Chemistry, 2011, 18, 3351-3360.	1.2	27
28	Anti-inflammatory activity of abietic acid, a diterpene isolated from Pimenta racemosa var. grissea. Journal of Pharmacy and Pharmacology, 2010, 53, 867-872.	1.2	86
29	Effects of furocoumarins from Cachrys trifida on some macrophage functions. Journal of Pharmacy and Pharmacology, 2010, 53, 1163-1168.	1.2	56
30	New insights into the mechanism of action of the anti-inflammatory triterpene lupeol. Journal of Pharmacy and Pharmacology, 2010, 53, 1533-1539.	1.2	150
31	Synthesis and induction of apoptosis signaling pathway of ent-kaurane derivatives. Bioorganic and Medicinal Chemistry, 2010, 18, 1724-1735.	1.4	47
32	Evaluation of labdane derivatives as potential anti-inflammatory agents. European Journal of Medicinal Chemistry, 2010, 45, 3155-3161.	2.6	21
33	The effect of preservative-free HP-Guar on dry eye after phacoemulsification: a flow cytometric study. Eye, 2010, 24, 1331-1337.	1.1	67
34	Benznidazole blocks NF-κB activation but not AP-1 through inhibition of IKK. Molecular Immunology, 2010, 47, 2485-2491.	1.0	21
35	Electronegative LDL induction of apoptosis in macrophages: Involvement of Nrf2. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2010, 1801, 430-437.	1.2	20
36	Molecular Basis of the Anti-Inflammatory Effects of Terpenoids. Inflammation and Allergy: Drug Targets, 2009, 8, 28-39.	1.8	122

3

BEATRIZ DE LAS HERAS

#	Article	IF	CITATIONS
37	Supression of inflammatory responses by labdane-type diterpenoids. Toxicology and Applied Pharmacology, 2008, 228, 179-189.	1.3	39
38	Modulation of inflammatory responses by diterpene acids from Helianthus annuus L Biochemical and Biophysical Research Communications, 2008, 369, 761-766.	1.0	31
39	Kaurane diterpenes protect against apoptosis and inhibition of phagocytosis in activated macrophages. British Journal of Pharmacology, 2007, 152, 249-255.	2.7	31
40	Biocompatibility of elastin-like polymer poly(VPAVG) microparticles:in vitro andin vivo studies. Journal of Biomedical Materials Research - Part A, 2006, 78A, 343-351.	2.1	86
41	Terpenoids: Sources, Structure Elucidation and Therapeutic Potential in Inflammation. Current Topics in Medicinal Chemistry, 2003, 3, 171-185.	1.0	65
42	Effects of six diterpenes on macrophage eicosanoid biosynthesis. Life Sciences, 2001, 70, 269-278.	2.0	35
43	Inhibition of the Nuclear Factor κB (NF-κB) Pathway by Tetracyclic Kaurene Diterpenes in Macrophages. Journal of Biological Chemistry, 2001, 276, 15854-15860.	1.6	105
44	Anti-Inflammatory and Immunomodulating Properties of a Sterol Fraction from Sideritis foetens Clem Biological and Pharmaceutical Bulletin, 2001, 24, 470-473.	0.6	121
45	Pharmacological modification of endogenous antioxidant enzymes by ursolic acid on tetrachloride-induced liver damagein rats and primary cultures of rat hepatocytes. Experimental and Toxicologic Pathology, 2001, 53, 199-206.	2.1	76
46	Anti-Inflammatory Properties of a Lipid Fraction Obtained from Sideritis javalambrensis Biological and Pharmaceutical Bulletin, 2000, 23, 1193-1197.	0.6	18
47	Immunomodulating Properties of the Diterpene Andalusol. Planta Medica, 2000, 66, 289-291.	0.7	17
48	Inhibition of NOS-2 expression in macrophages through the inactivation of NF-κ B by andalusol. British Journal of Pharmacology, 1999, 128, 605-612.	2.7	44
49	In vivo and in vitro antiinflammatory activity of a lipid compound from Sideritis javalambrensis P Phytotherapy Research, 1998, 12, S111-S113.	2.8	4
50	Antiinflammatory and antioxidant activity of plants used in traditional medicine in Ecuador. Journal of Ethnopharmacology, 1998, 61, 161-166.	2.0	118
51	Effects of Anisakis simplex on Nitric Oxide Production in J774 Macrophages. Scandinavian Journal of Infectious Diseases, 1998, 30, 603-606.	1.5	21
52	Distribution of HCV genotypes in patients infected by different sources. Research in Virology, 1997, 148, 367-373.	0.7	10
53	Andalusol, a Diterpenoid with anti-inflammatory Activity from Siderits foetens Clemen. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1997, 52, 844-849.	0.6	27
54	A novel diterpenoid labdane from Sideritis javalambrensis inhibits eicosanoid generation from stimulated macrophages but enhances arachidonate release. Biochemical Pharmacology, 1996, 51, 863-868.	2.0	30

BEATRIZ DE LAS HERAS

#	Article	IF	CITATIONS
55	Synthesis and Anti-inflammatory Evaluation of New Sulfamoylheterocarboxylic Derivatives. Archiv Der Pharmazie, 1996, 329, 229-238.	2.1	5
56	Fixed Oil ofNigella sativaand Derived Thymoquinone Inhibit Eicosanoid Generation in Leukocytes and Membrane Lipid Peroxidation. Planta Medica, 1995, 61, 33-36.	0.7	678
57	Non-Cytotoxic Inhibition of Macrophage Eicosanoid Biosynthesis and Effects on Leukocyte Functions and Reactive Oxygen Species of Two Novel Anti-Inflammatory Plant Diterpenoids. Planta Medica, 1994, 60, 501-506.	0.7	26
58	Calcium overload toxicity and functional impairment in peritoneal leukocytes elicited by glycogen or interleukin-1l². Agents and Actions, 1994, 41, 101-104.	0.7	6
59	Novel anti-inflammatory plant labdanes: Comparison ofin vitro properties with aspirin and indomethacin. Agents and Actions, 1994, 41, 114-117.	0.7	15
60	Inhibitory activity of a series of coumarins on leukocyte eicosanoid generation. Agents and Actions, 1994, 42, 44-49.	0.7	43
61	Superoxide scavenging activity in leukocytes and absence of cellular toxicity of a series of coumarins. Biochemical Pharmacology, 1994, 48, 445-451.	2.0	71
62	Anti-inflammatory activity of Sideritis javalambrensis extracts. Journal of Ethnopharmacology, 1994, 41, 15-17.	2.0	16
63	A manoyl oxide diterpenoid from Sideritis javalambrensis. Phytochemistry, 1993, 34, 575.	1.4	5
64	Anti-Inflammatory Activity ofSideritis javalambrensisin Rats. Planta Medica, 1990, 56, 658-659.	0.7	12