
Joanne Lannigan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4302168/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 2018, 7, 1535750.	12.2	6,961
2	Guidelines for the use of flow cytometry and cell sorting in immunological studies [*] . European Journal of Immunology, 2017, 47, 1584-1797.	2.9	505
3	MIFlowCytâ€EV: a framework for standardized reporting of extracellular vesicle flow cytometry experiments. Journal of Extracellular Vesicles, 2020, 9, 1713526.	12.2	243
4	Optimisation of imaging flow cytometry for the analysis of single extracellular vesicles by using fluorescenceâ€ŧagged vesicles as biological reference material. Journal of Extracellular Vesicles, 2019, 8, 1587567.	12.2	224
5	<scp>OMIPâ€069</scp> : Fortyâ€Color Full Spectrum Flow Cytometry Panel for Deep Immunophenotyping of Major Cell Subsets in Human Peripheral Blood. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2020, 97, 1044-1051.	1.5	187
6	Analytical challenges of extracellular vesicle detection: A comparison of different techniques. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2016, 89, 123-134.	1.5	177
7	Imaging flow cytometry elucidates limitations of microparticle analysis by conventional flow cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2014, 85, 756-770.	1.5	157
8	12/15-Lipoxygenase Activity Mediates Inflammatory Monocyte/Endothelial Interactions and Atherosclerosis in Vivo. Journal of Biological Chemistry, 2004, 279, 9440-9450.	3.4	134
9	Imaging flow cytometry for the characterization of extracellular vesicles. Methods, 2017, 112, 55-67.	3.8	84
10	Does FACS perturb gene expression?. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2015, 87, 166-175.	1.5	59
11	Rigorous characterization of urinary extracellular vesicles (uEVs) in the low centrifugation pellet - a neglected source for uEVs. Scientific Reports, 2020, 10, 3701.	3.3	45
12	An improved method for differentiating cell-bound from internalized particles by imaging flow cytometry. Journal of Immunological Methods, 2015, 423, 60-69.	1.4	35
13	Panel Optimization for Highâ€Dimensional Immunophenotyping Assays Using Fullâ€Spectrum Flow Cytometry. Current Protocols, 2021, 1, e222.	2.9	35
14	CD44 Deficiency Attenuates Chronic Murine lleitis. Gastroenterology, 2008, 135, 1993-2002.	1.3	24
15	International Society for Advancement of Cytometry (ISAC) flow cytometry shared resource laboratory (SRL) best practices. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2016, 89, 1017-1030.	1.5	24
16	Optimized protocol for the isolation of spleenâ€resident murine neutrophils. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2012, 81A, 806-814.	1.5	19
17	Practical Issues in High‧peed Cell Sorting. Current Protocols in Cytometry, 2010, 51, Unit 1.24.1-30.	3.7	18
18	Full spectrum flow cytometry and mass cytometry: A 32â€marker panel comparison. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2022, 101, 942-959.	1.5	18

JOANNE LANNIGAN

#	Article	IF	CITATIONS
19	T cell-derived extracellular vesicles are elevated in essential HTN. American Journal of Physiology - Renal Physiology, 2020, 319, F868-F875.	2.7	17
20	Unsupervised machine learning reveals key immune cell subsets in COVID-19, rhinovirus infection, and cancer therapy. ELife, 2021, 10, .	6.0	16
21	A Modified Injector and Sample Acquisition Protocol Can Improve Data Quality and Reduce Interâ€nstrument Variability of the Helios Mass Cytometer. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2019, 95, 1019-1030.	1.5	15
22	Measurement of extracellular vesicles and other submicron size particles by flow cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2016, 89, 109-110.	1.5	14
23	A miRNA signature in endothelial cell-derived extracellular vesicles in tumor-bearing mice. Scientific Reports, 2019, 9, 16743.	3.3	14
24	Highâ€Throughput Particle Uptake Analysis by Imaging Flow Cytometry. Current Protocols in Cytometry, 2017, 80, 11.22.1-11.22.17.	3.7	13
25	Using Imaging Flow Cytometry to Quantify Neutrophil Phagocytosis. Methods in Molecular Biology, 2020, 2087, 127-140.	0.9	11
26	Highâ€ŧhroughput detection and quantification of mitochondrial fusion through imaging flow cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2016, 89, 708-719.	1.5	9
27	Yeast Cell Cycle Analysis: Combining DNA Staining with Cell and Nuclear Morphology. Current Protocols in Cytometry, 2010, 53, Unit 9.32.1-16.	3.7	8
28	Imaging Flow Cytometry Quantifies Neural Genome Dynamics. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2019, 95, 825-835.	1.5	4
29	Shared Resource Laboratory (SRL) Communications—A New Journal Type. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2019, 95, 141-143.	1.5	4
30	Detection and Quantification of Mitochondrial Fusion Using Imaging Flow Cytometry. Current Protocols in Cytometry, 2017, 81, 9.53.1-9.53.13.	3.7	1
31	How Shared Resource Laboratories have risen and adapted to the challenges of a global pandemic. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2021, 99, 8-10.	1.5	1