Federico Martinelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4301780/publications.pdf Version: 2024-02-01

FEDERICO MARTINELLI

#	Article	IF	CITATIONS
1	LEGU-MED: Developing Biodiversity-Based Agriculture with Legume Cropping Systems in the Mediterranean Basin. Agronomy, 2022, 12, 132.	3.0	4
2	Meta-analysis of transcriptomic responses to cold stress in plants. Functional Plant Biology, 2022, 49, 704-724.	2.1	2
3	An Epigenetic Alphabet of Crop Adaptation to Climate Change. Frontiers in Genetics, 2022, 13, 818727.	2.3	15
4	Transcriptomic Analysis of the Pistacia vera (L.) Fruits Enable the Identification of Genes and Hormone-Related Gene Linked to Inflorescence Bud Abscission. Genes, 2022, 13, 60.	2.4	4
5	Identifying conserved genes involved in crop tolerance to cold stress. Functional Plant Biology, 2022, 49, 861-873.	2.1	4
6	Identification of conserved genes linked to responses to abiotic stresses in leaves among different plant species. Functional Plant Biology, 2021, 48, 54.	2.1	10
7	Deciphering the Epigenetic Alphabet Involved in Transgenerational Stress Memory in Crops. International Journal of Molecular Sciences, 2021, 22, 7118.	4.1	36
8	Epigenetics for Crop Improvement in Times of Global Change. Biology, 2021, 10, 766.	2.8	53
9	Computational screening of miRNAs and their targets in saffron (Crocus sativus L.) by transcriptome mining. Planta, 2021, 254, 117.	3.2	12
10	Botanical, Phytochemical, Anti-Microbial and Pharmaceutical Characteristics of Hawthorn (Crataegus monogyna Jacq.), Rosaceae. Molecules, 2021, 26, 7266.	3.8	25
11	A Comparative Transcriptomic Meta-Analysis Revealed Conserved Key Genes and Regulatory Networks Involved in Drought Tolerance in Cereal Crops. International Journal of Molecular Sciences, 2021, 22, 13062.	4.1	15
12	Plant stress biology in epigenomic era. Plant Science, 2020, 294, 110376.	3.6	34
13	Transcriptome Analysis of Pistacia vera Inflorescence Buds in Bearing and Non-Bearing Shoots Reveals the Molecular Mechanism Causing Premature Flower Bud Abscission. Genes, 2020, 11, 851.	2.4	9
14	Transcriptome Response of Metallicolous and a Non-Metallicolous Ecotypes of Noccaea goesingensis to Nickel Excess. Plants, 2020, 9, 951.	3.5	2
15	Gaining Insight into Exclusive and Common Transcriptomic Features Linked to Drought and Salinity Responses across Fruit Tree Crops. Plants, 2020, 9, 1059.	3.5	9
16	lt Is Our Turn to Get Cannabis High: Put Cannabinoids in Food and Health Baskets. Molecules, 2020, 25, 4036.	3.8	52
17	Proposed Research for Innovative Solutions for Chickpeas and Beans in a Climate Change Scenario: The Mediterranean Basin. Sustainability, 2020, 12, 1315.	3.2	5
18	Water Deficit Affects the Growth and Leaf Metabolite Composition of Young Loquat Plants. Plants, 2020, 9, 274.	3.5	12

#	Article	IF	CITATIONS
19	The priming fingerprint on the plant transcriptome investigated through meta-analysis of RNA-Seq data. European Journal of Plant Pathology, 2020, 156, 779-797.	1.7	12
20	Application of a portable instrument for rapid and reliable detection of SARS oVâ€2 infection in any environment. Immunological Reviews, 2020, 295, 4-10.	6.0	9
21	Advanced Glycation End Products (AGEs): Biochemistry, Signaling, Analytical Methods, and Epigenetic Effects. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-18.	4.0	213
22	A robust workflow for indirect somatic embryogenesis and cormlet production in saffron (Crocus) Tj ETQq0 0 0 r	rgBT /Over 3.2	lock 10 Tf 50 14
23	Identification of microRNAS differentially regulated by water deficit in relation to mycorrhizal treatment in wheat. Molecular Biology Reports, 2019, 46, 5163-5174.	2.3	11
24	Deciphering transcriptional regulation mechanisms underlining fruit development and ripening in Vitis vinifera. Journal of Berry Research, 2019, 9, 641-664.	1.4	2
25	Identification of key genes and its chromosome regions linked to drought responses in leaves across different crops through meta-analysis of RNA-Seq data. BMC Plant Biology, 2019, 19, 194.	3.6	45
26	Short-Term Responses of Apple Fruit to Partial Reoxygenation during Extreme Hypoxic Storage Conditions. Journal of Agricultural and Food Chemistry, 2019, 67, 4754-4763.	5.2	11
27	Members of the WRKY gene family are upregulated in Canary palms attacked by Red Palm Weevil. Arthropod-Plant Interactions, 2019, 13, 109-116.	1.1	1
28	Identification of miRNAs linked with the drought response of tef [Eragrostis tef (Zucc.) Trotter]. Journal of Plant Physiology, 2018, 224-225, 163-172.	3.5	13
29	Transcriptomic responses to biotic stresses in Malus x domestica: a meta-analysis study. Scientific Reports, 2018, 8, 1970.	3.3	37
30	RNA uridylation and decay in plants. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20180163.	4.0	14
31	Metabolic Profiling and Post-harvest Behavior of "Dottato―Fig (Ficus carica L.) Fruit Covered With an Edible Coating From O. ficus-indica. Frontiers in Plant Science, 2018, 9, 1321.	3.6	30
32	Identifying Host Molecular Features Strongly Linked With Responses to Huanglongbing Disease in Citrus Leaves. Frontiers in Plant Science, 2018, 9, 277.	3.6	25
33	In-Field and Early Detection of Xylella fastidiosa Infections in Olive Using a Portable Instrument. Frontiers in Plant Science, 2018, 9, 2007.	3.6	9
34	Identification and characterization of durum wheat microRNAs in leaf and root tissues. Functional and Integrative Genomics, 2017, 17, 583-598.	3.5	28
35	Gaining Insight into Exclusive and Common Transcriptomic Features Linked with Biotic Stress Responses in Malus. Frontiers in Plant Science, 2017, 8, 1569.	3.6	28

36Arbuscular mycorrhizal symbiosis mitigates the negative effects of salinity on durum wheat. PLoS
ONE, 2017, 12, e0184158.2.562

Federico Martinelli

#	Article	IF	CITATIONS
37	Molecular Responses to Small Regulating Molecules against Huanglongbing Disease. PLoS ONE, 2016, 11, e0159610.	2.5	7
38	<i>Rhynchophorus ferrugineus</i> attack affects a group of compounds rather than rearranging <i>Phoenix canariensis</i> metabolic pathways. Journal of Integrative Plant Biology, 2016, 58, 388-396.	8.5	15
39	Agronomic, metabolomic and lipidomic characterisation of Sicilian Origanum vulgare (L.) ecotypes. Natural Product Research, 2016, 30, 1103-1107.	1.8	6
40	A microarray analysis highlights the role of tetrapyrrole pathways in grapevine responses to "stolbur―phytoplasma, phloem virus infections and recovered status. Physiological and Molecular Plant Pathology, 2016, 93, 129-137.	2.5	17
41	Metabolomics Suggests That Soil Inoculation with Arbuscular Mycorrhizal Fungi Decreased Free Amino Acid Content in Roots of Durum Wheat Grown under N-Limited, P-Rich Field Conditions. PLoS ONE, 2015, 10, e0129591.	2.5	69
42	Soil inoculation with symbiotic microorganisms promotes plant growth and nutrient transporter genes expression in durum wheat. Frontiers in Plant Science, 2015, 6, 815.	3.6	118
43	Transcriptome analysis of Phoenix canariensis Chabaud in response to Rhynchophorus ferrugineus Olivier attacks. Frontiers in Plant Science, 2015, 6, 817.	3.6	18
44	Stress responses in citrus peel: Comparative analysis of host responses to Huanglongbing disease and puffing disorder. Scientia Horticulturae, 2015, 192, 409-420.	3.6	38
45	Advanced methods of plant disease detection. A review. Agronomy for Sustainable Development, 2015, 35, 1-25.	5.3	579
46	Detection and identification of Fabavirus species by one-step RT-PCR and multiplex RT-PCR. Journal of Virological Methods, 2014, 197, 77-82.	2.1	28
47	Transcriptome and metabolome analysis of Citrus fruit to elucidate puffing disorder. Plant Science, 2014, 217-218, 87-98.	3.6	52
48	Gene Regulatory Networks Elucidating Huanglongbing Disease Mechanisms. PLoS ONE, 2013, 8, e74256.	2.5	106
49	Transcriptome Profiling of Citrus Fruit Response to Huanglongbing Disease. PLoS ONE, 2012, 7, e38039.	2.5	158
50	Analysis of Early Host Responses for Asymptomatic Disease Detection and Management of Specialty Crops. Critical Reviews in Immunology, 2010, 30, 277-289.	0.5	34
51	Light induces expression of a dehydrin-encoding gene during seedling de-etiolation in sunflower (Helianthus annuus L.). Journal of Plant Physiology, 2007, 164, 263-273.	3.5	23