Saravanamurugan Shunmugavel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4301533/publications.pdf Version: 2024-02-01

SARAVANAMURUGAN

#	Article	IF	CITATIONS
1	Advances in the Catalytic Reductive Amination of Furfural to Furfural Amine: The Momentous Role of Active Metal Sites. ChemSusChem, 2022, 15, .	6.8	22
2	Preface to Special Issue on Green Conversion of HMF. ChemSusChem, 2022, 15, .	6.8	10
3	Aluminaâ€Supported Alkali and Alkaline Earth Metalâ€Based Catalyst for Selective Decarboxylation of Itaconic Acid to Methacrylic Acid. ChemistrySelect, 2021, 6, 3352-3359.	1.5	5
4	Modification of commercial Y zeolites by alkaline-treatment for improved performance in the isomerization of glucose to fructose. Molecular Catalysis, 2021, 510, 111686.	2.0	12
5	On The Rise: Heterogeneous Catalysis for Biomass Valorisation. Current Catalysis, 2021, 10, 101-102.	0.5	1
6	Heterogeneous Base atalyzed Conversion of Glycolaldehyde to Aldotetroses: Mechanistic and Kinetic Insight. ChemCatChem, 2021, 13, 5141-5147.	3.7	5
7	Consecutive Organosolv and Alkaline Pretreatment: An Efficient Approach toward the Production of Cellulose from Rice Straw. ACS Omega, 2021, 6, 27247-27258.	3.5	14
8	Visible-light-driven prompt and quantitative production of lactic acid from biomass sugars over a N-TiO ₂ photothermal catalyst. Green Chemistry, 2021, 23, 10039-10049.	9.0	27
9	Rice Straw: A Major Renewable Lignocellulosic Biomass for Value-Added Carbonaceous Materials. Current Green Chemistry, 2020, 7, 290-303.	1.1	7
10	Heterogeneous (de)chlorination-enabled control of reactivity in the liquid-phase synthesis of furanic biofuel from cellulosic feedstock. Green Chemistry, 2020, 22, 637-645.	9.0	32
11	Endogenous X–Cî€O species enable catalyst-free formylation prerequisite for CO ₂ reductive upgrading. Green Chemistry, 2020, 22, 5822-5832.	9.0	21
12	Untangling the active sites in the exposed crystal facet of zirconium oxide for selective hydrogenation of bioaldehydes. Catalysis Science and Technology, 2020, 10, 7016-7026.	4.1	17
13	Oxidation of 5-hydroxymethylfurfural to 5-formyl furan-2-carboxylic acid by non-precious transition metal oxide-based catalyst. Journal of Supercritical Fluids, 2020, 160, 104812.	3.2	18
14	Heterostructured manganese catalysts for the selective oxidation of 5â€hydroxymethylfurfural to 2,5â€diformylfuran. ChemCatChem, 2020, 12, 2324-2332.	3.7	25
15	MnOx/P25 with tuned surface structures of anatase-rutile phase for aerobic oxidation of 5-hydroxymethylfurfural into 2,5-diformylfuran. Catalysis Today, 2019, 319, 105-112.	4.4	23
16	Quasi-Catalytic Approach to N-Unprotected Lactams via Transfer Hydro-amination/Cyclization of Biobased Keto Acids. ACS Sustainable Chemistry and Engineering, 2019, 7, 10207-10213.	6.7	18
17	Catalytic Upgrading of Biorenewables to Value-Added Products. International Journal of Chemical Engineering, 2019, 2019, 1-2.	2.4	1
18	Tin Grafted on Modified Alumina-Catalyzed Isomerisation of Glucose to Fructose. Applied Catalysis A: General, 2019, 582, 117094.	4.3	6

#	Article	IF	CITATIONS
19	Ru-Catalyzed Oxidative Cleavage of Guaiacyl GlycerolGuaiacyl Ether-a Representative -O-4 Lignin Model Compound. Catalysts, 2019, 9, 832.	3.5	7
20	Catalytic Interconversion of Sugars with Zeolite and Zeotype Materials. , 2019, , 57-71.		0
21	Catalytic Upgrading of Biomassâ€Derived Sugars with Acidic Nanoporous Materials: Structural Role in Carbonâ€Chain Length Variation. ChemSusChem, 2019, 12, 347-378.	6.8	30
22	Recent Advances in the Development of 5â€Hydroxymethylfurfural Oxidation with Base (Nonprecious)â€Metalâ€Containing Catalysts. ChemSusChem, 2019, 12, 145-163.	6.8	141
23	Pd-catalysed formation of ester products from cascade reaction of 5-hydroxymethylfurfural with 1-hexene. Applied Catalysis A: General, 2019, 569, 170-174.	4.3	9
24	Selective Hydrodeoxygenation of Alkyl Lactates to Alkyl Propionates with Feâ€based Bimetallic Supported Catalysts. ChemSusChem, 2018, 11, 681-687.	6.8	8
25	Catalytic Tandem Reaction for the Production of Jet and Diesel Fuel Range Alkanes. Energy Technology, 2018, 6, 1060-1066.	3.8	11
26	Carbon-Increasing Catalytic Strategies for Upgrading Biomass into Energy-Intensive Fuels and Chemicals. ACS Catalysis, 2018, 8, 148-187.	11.2	267
27	Noble metal-free upgrading of multi-unsaturated biomass derivatives at room temperature: silyl species enable reactivity. Green Chemistry, 2018, 20, 5327-5335.	9.0	28
28	Porous Zrâ€Bibenzyldiphosphonate Nanohybrid with Extra Hydroxy Species for Enhancive Upgrading of Biomassâ€Based Levulinates. ChemistrySelect, 2018, 3, 4252-4261.	1.5	3
29	Control of selectivity in hydrosilane-promoted heterogeneous palladium-catalysed reduction of furfural and aromatic carboxides. Communications Chemistry, 2018, 1, .	4.5	31
30	Porous Zirconium–Furandicarboxylate Microspheres for Efficient Redox Conversion of Biofuranics. ChemSusChem, 2017, 10, 1761-1770.	6.8	81
31	Facile and benign conversion of sucrose to fructose using zeolites with balanced BrÃ,nsted and Lewis acidity. Catalysis Science and Technology, 2017, 7, 2782-2788.	4.1	17
32	A Pd-Catalyzed in situ domino process for mild and quantitative production of 2,5-dimethylfuran directly from carbohydrates. Green Chemistry, 2017, 19, 2101-2106.	9.0	61
33	Glucose Isomerization by Enzymes and Chemo-catalysts: Status and Current Advances. ACS Catalysis, 2017, 7, 3010-3029.	11.2	154
34	Chemoselective Synthesis of Dithioacetals from Bioâ€ e ldehydes with Zeolites under Ambient and Solventâ€free Conditions. ChemCatChem, 2017, 9, 1097-1104.	3.7	16
35	Highly Recyclable Fluoride for Enhanced Cascade Hydrosilylation–Cyclization of Levulinates to γ-Valerolactone at Low Temperatures. ACS Sustainable Chemistry and Engineering, 2017, 5, 9640-9644.	6.7	18
36	Highly Selective Aerobic Oxidation of 5â€Hydroxymethyl Furfural into 2,5â€Diformylfuran over Mn–Co Binary Oxides. ChemistrySelect, 2017, 2, 6632-6639.	1.5	32

#	Article	IF	CITATIONS
37	Mechanism and stereoselectivity of zeolite-catalysed sugar isomerisation in alcohols. Chemical Communications, 2016, 52, 12773-12776.	4.1	20
38	Zeolite and zeotype-catalysed transformations of biofuranic compounds. Green Chemistry, 2016, 18, 5701-5735.	9.0	142
39	Shapeâ€selective Valorization of Biomassâ€derived Glycolaldehyde using Tinâ€containing Zeolites. ChemSusChem, 2016, 9, 3054-3061.	6.8	31
40	Efficient Aerobic Oxidation of 5â€Hydroxymethylfurfural in Aqueous Media with Au–Pd Supported on Zinc Hydroxycarbonate. ChemCatChem, 2016, 8, 3636-3643.	3.7	50
41	Combined Function of BrÃ,nsted and Lewis Acidity in the Zeolite atalyzed Isomerization of Glucose to Fructose in Alcohols. ChemCatChem, 2016, 8, 3107-3111.	3.7	35
42	Acid–Base Bifunctional Zirconium <i>N</i> -Alkyltriphosphate Nanohybrid for Hydrogen Transfer of Biomass-Derived Carboxides. ACS Catalysis, 2016, 6, 7722-7727.	11.2	158
43	Shape-selective Valorization of Biomass-derived Glycolaldehyde using Tin-containing Zeolites. ChemSusChem, 2016, 9, 3022-3022.	6.8	5
44	BrÃ,nsted Acid Ionic Liquids (BAILs) as Efficient and Recyclable Catalysts in the Conversion of Glycerol to Solketal at Room Temperature. ChemistrySelect, 2016, 1, 5869-5873.	1.5	23
45	Tin-containing silicates: identification of a glycolytic pathway via 3-deoxyglucosone. Green Chemistry, 2016, 18, 3360-3369.	9.0	56
46	Direct transformation of carbohydrates to the biofuel 5-ethoxymethylfurfural by solid acid catalysts. Green Chemistry, 2016, 18, 726-734.	9.0	151
47	Xylose Isomerization with Zeolites in a Twoâ€Step Alcohol–Water Process. ChemSusChem, 2015, 8, 1088-1094.	6.8	36
48	Catalytic Alkylation of 2-Methylfuran with Formalin Using Supported Acidic Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2015, 3, 3274-3280.	6.7	50
49	Aerobic Oxidation of Veratryl Alcohol to Veratraldehyde with Heterogeneous Ruthenium Catalysts. Topics in Catalysis, 2015, 58, 1036-1042.	2.8	24
50	Highly Selective Liquid-Phase Benzylation of Anisole with Solid-Acid Zeolite Catalysts. Topics in Catalysis, 2015, 58, 1053-1061.	2.8	4
51	Chemoselective Oxidation of Bio-Glycerol with Nano-Sized Metal Catalysts. Mini-Reviews in Organic Chemistry, 2015, 12, 162-177.	1.3	4
52	Acetalization of furfural with zeolites under benign reaction conditions. Catalysis Today, 2014, 234, 233-236.	4.4	71
53	Amineâ€Functionalized Amino Acidâ€based Ionic Liquids as Efficient and Highâ€Capacity Absorbents for CO ₂ . ChemSusChem, 2014, 7, 897-902.	6.8	153
54	Direct catalytic transformation of carbohydrates into 5-ethoxymethylfurfural with acid–base bifunctional hybrid nanospheres. Energy Conversion and Management, 2014, 88, 1245-1251.	9.2	70

#	Article	IF	CITATIONS
55	Zeolite-catalyzed isomerization of tetroses in aqueous medium. Catalysis Science and Technology, 2014, 4, 3186.	4.1	26
56	Efficient Isomerization of Glucose to Fructose over Zeolites in Consecutive Reactions in Alcohol and Aqueous Media. Journal of the American Chemical Society, 2013, 135, 5246-5249.	13.7	195
57	Revisiting the BrÃ,nsted acid catalysed hydrolysis kinetics of polymeric carbohydrates in ionic liquids by in situ ATR-FTIR spectroscopy. Green Chemistry, 2013, 15, 2843.	9.0	31
58	BrÃ,nsted acid ionic liquid catalyzed formation of pyruvaldehyde dimethylacetal from triose sugars. Catalysis Today, 2013, 200, 94-98.	4.4	14
59	Zeolite Catalyzed Transformation of Carbohydrates to Alkyl Levulinates. ChemCatChem, 2013, 5, 1754-1757.	3.7	121
60	Sn-Beta catalysed conversion of hemicellulosic sugars. Green Chemistry, 2012, 14, 702.	9.0	216
61	Synthesis and Characterization of Ammonium-, Pyridinium-, and Pyrrolidinium-Based Sulfonamido Functionalized Ionic Liquids. Synthetic Communications, 2012, 42, 3383-3394.	2.1	5
62	Solid acid catalysed formation of ethyl levulinate and ethyl glucopyranoside from mono- and disaccharides. Catalysis Communications, 2012, 17, 71-75.	3.3	158
63	Conversion of Mono―and Disaccharides to Ethyl Levulinate and Ethyl Pyranoside with Sulfonic Acidâ€Functionalized Ionic Liquids. ChemSusChem, 2011, 4, 723-726.	6.8	155
64	Zeolite H-USY for the production of lactic acid and methyl lactate from C3-sugars. Journal of Catalysis, 2010, 269, 122-130.	6.2	200
65	Direct synthesis of carbon-templating mesoporous ZSM-5 using microwave heating. Journal of Catalysis, 2010, 276, 327-334.	6.2	137
66	Selective Gas Absorption by Ionic Liquids. ECS Transactions, 2010, 33, 117-126.	0.5	7
67	Conversion of Sugars to Lactic Acid Derivatives Using Heterogeneous Zeotype Catalysts. Science, 2010, 328, 602-605.	12.6	797
68	Zeolite atalyzed Isomerization of Triose Sugars. ChemSusChem, 2009, 2, 625-627.	6.8	252
69	High Yield of Liquid Range Olefins Obtained by Converting <i>i</i> -Propanol over Zeolite H-ZSM-5. Journal of the American Chemical Society, 2009, 131, 17009-17013.	13.7	50
70	Liquid-phase reaction of 2′-hydroxyacetophenone and benzaldehyde over SO3H-SBA-15 catalysts: Influence of microwave and thermal effects. Microporous and Mesoporous Materials, 2008, 112, 97-107.	4.4	24
71	Transesterification reactions over morphology controlled amino-functionalized SBA-15 catalysts. Catalysis Communications, 2008, 9, 158-163.	3.3	49
72	Short channeled amino functionalized SBA-15 catalysts for the liquid phase reaction between 2-hydroxyacetophenone and benzaldehyde. Studies in Surface Science and Catalysis, 2008, 174, 1271-1274.	1.5	1

#	Article	IF	CITATIONS
73	Synthesis, characterisation and catalytic performance of HMCM-22 of different silica to alumina ratios. Journal of Molecular Catalysis A, 2007, 272, 38-44.	4.8	25
74	Knoevenagel condensation over β and Y zeolites in liquid phase under solvent free conditions. Applied Catalysis A: General, 2006, 298, 8-15.	4.3	106
75	Solvent free synthesis of chalcone and flavanone over zinc oxide supported metal oxide catalysts. Catalysis Communications, 2005, 6, 399-403.	3.3	42
76	Oxyfunctionalisation of toluene with activated t-butyl hydroperoxide. Applied Catalysis A: General, 2004, 273, 143-149.	4.3	18
77	Alkylation and acylation of phenol with methyl acetate. Journal of Molecular Catalysis A, 2004, 223, 177-183.	4.8	10
78	Synthesis of highly acidic and well ordered MgAl-MCM-41 and its catalytic performance on the isopropylation of m-cresol. Microporous and Mesoporous Materials, 2004, 76, 91-98.	4.4	28
79	Liquid phase reaction of 2′-hydroxyacetophenone and benzaldehyde over ZSM-5 catalysts. Journal of Molecular Catalysis A, 2004, 218, 101-106.	4.8	40
80	Liquid phase reaction of 2\$prime;-hydroxyacetophenone and benzaldehyde over ZSM-5 catalysts. Journal of Molecular Catalysis A, 2004, 218, 101-101.	4.8	0