Pinghui Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4301495/publications.pdf Version: 2024-02-01

Ріменці Млі

#	Article	IF	CITATIONS
1	Multi-mode surface plasmon resonance absorber based on dart-type single-layer graphene. RSC Advances, 2022, 12, 7821-7829.	3.6	226
2	Thermal tuning of terahertz metamaterial absorber properties based on VO ₂ . Physical Chemistry Chemical Physics, 2022, 24, 8846-8853.	2.8	197
3	A four-band and polarization-independent BDS-based tunable absorber with high refractive index sensitivity. Physical Chemistry Chemical Physics, 2021, 23, 26864-26873.	2.8	189
4	A switchable terahertz device combining ultra-wideband absorption and ultra-wideband complete reflection. Physical Chemistry Chemical Physics, 2022, 24, 2527-2533.	2.8	186
5	Ultra-wideband solar absorber based on refractory titanium metal. Renewable Energy, 2020, 158, 227-235.	8.9	185
6	Realization of 18.97% theoretical efficiency of 0.9 μm thick c-Si/ZnO heterojunction ultrathin-film solar cells <i>via</i> surface plasmon resonance enhancement. Physical Chemistry Chemical Physics, 2022, 24, 4871-4880.	2.8	156
7	High Quality Factor, High Sensitivity Metamaterial Graphene—Perfect Absorber Based on Critical Coupling Theory and Impedance Matching. Nanomaterials, 2020, 10, 95.	4.1	146
8	Study on Temperature Adjustable Terahertz Metamaterial Absorber Based on Vanadium Dioxide. IEEE Access, 2020, 8, 85154-85161.	4.2	110
9	A Tunable Triple-Band Near-Infrared Metamaterial Absorber Based on Au Nano-Cuboids Array. Nanomaterials, 2020, 10, 207.	4.1	99
10	Tunable Broadband Solar Energy Absorber Based on Monolayer Transition Metal Dichalcogenides Materials Using Au Nanocubes. Nanomaterials, 2020, 10, 257.	4.1	98
11	Dual-Band Plasmonic Perfect Absorber Based on Graphene Metamaterials for Refractive Index Sensing Application. Micromachines, 2019, 10, 443.	2.9	89
12	Dual band visible metamaterial absorbers based on four identical ring patches. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 127, 114526.	2.7	78
13	Fabrication of ZnO@Ag3PO4 Core-Shell Nanocomposite Arrays as Photoanodes and Their Photoelectric Properties. Nanomaterials, 2019, 9, 1254.	4.1	73
14	Fabrication of ZnO@MoS2 Nanocomposite Heterojunction Arrays and Their Photoelectric Properties. Micromachines, 2020, 11, 189.	2.9	72
15	Tunable Graphene-based Plasmonic Perfect Metamaterial Absorber in the THz Region. Micromachines, 2019, 10, 194.	2.9	70
16	A Narrow Dual-Band Monolayer Unpatterned Graphene-Based Perfect Absorber with Critical Coupling in the Near Infrared. Micromachines, 2020, 11, 58.	2.9	52
17	Fabrication of ZnO@Ag@Ag3PO4 Ternary Heterojunction: Superhydrophilic Properties, Antireflection and Photocatalytic Properties. Micromachines, 2020, 11, 309.	2.9	52
18	A Perfect Absorber Based on Similar Fabry-Perot Four-Band in the Visible Range. Nanomaterials, 2020, 10, 488.	4.1	50

Рімсниі Wu

#	Article	IF	CITATIONS
19	Based on Ultrathin PEDOT:PSS/c-Ge Solar Cells Design and Their Photoelectric Performance. Coatings, 2021, 11, 748.	2.6	27
20	Tunable and ultra-elongated photonic nanojet generated by a liquid-immersed core–shell dielectric microsphere. Applied Physics Express, 2015, 8, 112001.	2.4	26
21	A Near-Infrared Multi-Band Perfect Absorber Based on 1D Gold Grating Fabry-Perot Structure. IEEE Access, 2020, 8, 72742-72748.	4.2	20
22	Preparation of ZnO/Bi2O3 Composites as Heterogeneous Thin Film Materials with High Photoelectric Performance on FTO Base. Coatings, 2021, 11, 1140.	2.6	15
23	Terahertz Broadband Absorber Based on a Combined Circular Disc Structure. Micromachines, 2021, 12, 1290.	2.9	12
24	Adjusting the Energy Bands of WO3@ZnO Nanocomposite Heterojunction Through the Combination of WO3 Thin Film to Improve its Photoelectric Performance. IEEE Access, 2020, 8, 171350-171358.	4.2	10
25	Ultra-Wideband and Wide-Angle Perfect Solar Energy Absorber Based on Titanium and Silicon Dioxide Colloidal Nanoarray Structure. Nanomaterials, 2021, 11, 2040.	4.1	9
26	Clâ^' Doping Strategy to Boost the Lithium Storage Performance of Lithium Titanium Phosphate. Frontiers in Chemistry, 2020, 8, 349.	3.6	4
27	The Structure Design and Photoelectric Properties of Wideband High Absorption Ge/GaAs/P3HT:PCBM Solar Cells. Micromachines, 2022, 13, 349.	2.9	3
28	Ultrahigh Quality Factor Photonic Nanojets Generated by Truncated Microtoroid Structures. IEEE Photonics Journal, 2021, 13, 1-6.	2.0	2
29	Ultra Narrow Dual-Band Perfect Absorber Based on a Dielectricâ^'Dielectricâ^'Metal Three-Layer Film Material. Micromachines, 2021, 12, 1552.	2.9	2
30	Grating Structure Broadband Absorber Based on Gallium Arsenide and Titanium. Coatings, 2022, 12, 588.	2.6	2
31	Perfect Absorption of Fan-Shaped Graphene Absorbers with Good Adjustability in the Mid-Infrared. Coatings, 2022, 12, 990.	2.6	1
32	Optical Needle Beam Generated by a Mesoscale Dielectric Microtoroid. , 2021, , .		0