
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/430119/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy and Environmental Science, 2013, 6, 3112.                                      | 15.6 | 1,475     |
| 2  | Methods, Mechanism, and Applications of Photodeposition in Photocatalysis: A Review. Chemical<br>Reviews, 2016, 116, 14587-14619.                                                                                     | 23.0 | 731       |
| 3  | Electrochemical CO <sub>2</sub> reduction on Cu <sub>2</sub> O-derived copper nanoparticles:<br>controlling the catalytic selectivity of hydrocarbons. Physical Chemistry Chemical Physics, 2014, 16,<br>12194-12201. | 1.3  | 458       |
| 4  | Electrocatalytic reduction of carbon dioxide to carbon monoxide and methane at an immobilized cobalt protoporphyrin. Nature Communications, 2015, 6, 8177.                                                            | 5.8  | 456       |
| 5  | A review of intensification of photocatalytic processes. Chemical Engineering and Processing:<br>Process Intensification, 2007, 46, 781-789.                                                                          | 1.8  | 387       |
| 6  | Manipulating the Hydrocarbon Selectivity of Copper Nanoparticles in CO <sub>2</sub><br>Electroreduction by Process Conditions. ChemElectroChem, 2015, 2, 354-358.                                                     | 1.7  | 361       |
| 7  | Artificial Photosynthesis over Crystalline TiO <sub>2</sub> -Based Catalysts: Fact or Fiction?. Journal of the American Chemical Society, 2010, 132, 8398-8406.                                                       | 6.6  | 343       |
| 8  | Three-dimensional porous hollow fibre copper electrodes for efficient and high-rate electrochemical carbon dioxide reduction. Nature Communications, 2016, 7, 10748.                                                  | 5.8  | 294       |
| 9  | Isoreticular MOFs as Efficient Photocatalysts with Tunable Band Gap: An Operando FTIR Study of the<br>Photoinduced Oxidation of Propylene. ChemSusChem, 2008, 1, 981-983.                                             | 3.6  | 246       |
| 10 | Stability and Selectivity of Au/TiO2 and Au/TiO2/SiO2 Catalysts in Propene Epoxidation: An in Situ FT-IR<br>Study. Journal of Catalysis, 2001, 201, 128-137.                                                          | 3.1  | 244       |
| 11 | InÂsitu investigation of the thermal decomposition of Co–Al hydrotalcite in different atmospheres.<br>Journal of Materials Chemistry, 2001, 11, 821-830.                                                              | 6.7  | 218       |
| 12 | CeO2 catalysed soot oxidation. Applied Catalysis B: Environmental, 2004, 51, 9-19.                                                                                                                                    | 10.8 | 209       |
| 13 | Mesoporous silica material TUD-1 as a drug delivery system. International Journal of Pharmaceutics, 2007, 331, 133-138.                                                                                               | 2.6  | 202       |
| 14 | Physicochemical Characterization of Isomorphously Substituted FeZSM-5 during Activation. Journal of Catalysis, 2002, 207, 113-126.                                                                                    | 3.1  | 197       |
| 15 | The six-flow reactor technology A review on fast catalyst screening and kinetic studies. Catalysis<br>Today, 2000, 60, 93-109.                                                                                        | 2.2  | 194       |
| 16 | Synergy of ferroelectric polarization and oxygen vacancy to promote CO2 photoreduction. Nature Communications, 2021, 12, 4594.                                                                                        | 5.8  | 180       |
| 17 | Evaluation of Mesoporous TCPSi, MCM-41, SBA-15, and TUD-1 Materials as API Carriers for Oral Drug Delivery. Drug Delivery, 2007, 14, 337-347.                                                                         | 2.5  | 169       |
| 18 | The effect of surface OH-population on the photocatalytic activity of rare earth-doped P25-TiO2 in methylene blue degradation. Journal of Catalysis, 2008, 260, 75-80.                                                | 3.1  | 169       |

| #  | Article                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Steam-activated FeMFI zeolites. Evolution of iron species and activity in direct N2O decomposition.<br>Journal of Catalysis, 2003, 214, 33-45.                                                     | 3.1  | 167       |
| 20 | NO-Assisted N2O Decomposition over Fe-Based Catalysts: Effects of Gas-Phase Composition and Catalyst Constitution. Journal of Catalysis, 2002, 208, 211-223.                                       | 3.1  | 156       |
| 21 | Selective photo(catalytic)-oxidation of cyclohexane: Effect of wavelength and TiO2 structure on product yields. Journal of Catalysis, 2006, 238, 342-352.                                          | 3.1  | 153       |
| 22 | In situ Fourier transform infrared and laser Raman spectroscopic study of the thermal decomposition of Co–Al and Ni–Al hydrotalcites. Vibrational Spectroscopy, 2001, 27, 75-88.                   | 1.2  | 149       |
| 23 | Palladium–gold catalyst for the electrochemical reduction of CO <sub>2</sub> to<br>C <sub>1</sub> –C <sub>5</sub> hydrocarbons. Chemical Communications, 2016, 52, 10229-10232.                    | 2.2  | 146       |
| 24 | Islanded ammonia power systems: Technology review & conceptual process design. Renewable and<br>Sustainable Energy Reviews, 2019, 114, 109339.                                                     | 8.2  | 141       |
| 25 | CO2 photoreduction using NiO/InTaO4 in optical-fiber reactor for renewable energy. Applied Catalysis<br>A: General, 2010, 380, 172-177.                                                            | 2.2  | 139       |
| 26 | Soot oxidation catalyzed by a Cu/K/Mo/Cl catalyst: evaluation of the chemistry and performance of the catalyst. Applied Catalysis B: Environmental, 1995, 6, 339-352.                              | 10.8 | 131       |
| 27 | A novel photocatalytic monolith reactor for multiphase heterogeneous photocatalysis. Applied<br>Catalysis A: General, 2008, 334, 119-128.                                                          | 2.2  | 124       |
| 28 | Mechanistic study of hydrocarbon formation in photocatalytic CO2 reduction over Ti-SBA-15. Journal of Catalysis, 2011, 284, 1-8.                                                                   | 3.1  | 118       |
| 29 | How Phase Composition Influences Optoelectronic and Photocatalytic Properties of<br>TiO <sub>2</sub> . Journal of Physical Chemistry C, 2011, 115, 2211-2217.                                      | 1.5  | 117       |
| 30 | Surface Ti <sup>3+</sup> -Containing (blue) Titania: A Unique Photocatalyst with High Activity and Selectivity in Visible Light-Stimulated Selective Oxidation. ACS Catalysis, 2012, 2, 2641-2647. | 5.5  | 108       |
| 31 | Superior performance of ex-framework FeZSM-5 in direct N2O decomposition in tail-gases from nitric acid plants. Chemical Communications, 2001, , 693-694.                                          | 2.2  | 107       |
| 32 | DRIFTS study of the water–gas shift reaction over Au/Fe2O3. Journal of Catalysis, 2006, 243, 171-182.                                                                                              | 3.1  | 106       |
| 33 | Ex-framework FeZSM-5 for control of N2O in tail-gases. Catalysis Today, 2002, 76, 55-74.                                                                                                           | 2.2  | 104       |
| 34 | In Situ ATR-FTIR Study on the Selective Photo-oxidation of Cyclohexane over Anatase TiO <sub>2</sub> .<br>Journal of Physical Chemistry C, 2008, 112, 1552-1561.                                   | 1.5  | 100       |
| 35 | Catalytic oxidation of model soot by metal chlorides. Applied Catalysis B: Environmental, 1997, 12, 33-47.                                                                                         | 10.8 | 98        |
| 36 | The formation of carbon surface oxygen complexes by oxygen and ozone. The effect of transition metal oxides. Carbon, 1998, 36, 1269-1276.                                                          | 5.4  | 98        |

| #  | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | NO Adsorption on Ex-Framework [Fe,X]MFI Catalysts: Novel IR Bands and Evaluation of Assignments.<br>Catalysis Letters, 2002, 80, 129-138.                                                                                  | 1.4  | 97        |
| 38 | Highly active SO2-resistant ex-framework FeMFI catalysts for direct N2O decomposition. Applied Catalysis B: Environmental, 2002, 35, 227-234.                                                                              | 10.8 | 96        |
| 39 | Transition Metal Oxide Catalyzed Carbon Black Oxidation: A Study with18O2. Journal of Catalysis, 1998, 179, 258-266.                                                                                                       | 3.1  | 95        |
| 40 | TUD-1: synthesis and application of a versatile catalyst, carrier, material…. Journal of Materials<br>Chemistry, 2010, 20, 642-658.                                                                                        | 6.7  | 92        |
| 41 | Transient Behavior of Ni@NiO <sub><i>x</i></sub> Functionalized SrTiO <sub>3</sub> in Overall<br>Water Splitting. ACS Catalysis, 2017, 7, 1610-1614.                                                                       | 5.5  | 88        |
| 42 | Synthesis, characterization, and unique catalytic performance of the mesoporous material Fe-TUD-1 in<br>Friedel–Crafts benzylation of benzene. Catalysis Today, 2005, 100, 255-260.                                        | 2.2  | 85        |
| 43 | Enabling Electrocatalytic Fischer–Tropsch Synthesis from Carbon Dioxide Over Copper-based<br>Electrodes. Catalysis Letters, 2008, 123, 186-192.                                                                            | 1.4  | 85        |
| 44 | Title is missing!. Catalysis Letters, 2003, 86, 121-132.                                                                                                                                                                   | 1.4  | 83        |
| 45 | On the mechanism of model diesel soot-O2 reaction catalysed by Pt-containing La3+-doped CeO2A TAP study with isotopic O2. Catalysis Today, 2007, 121, 237-245.                                                             | 2.2  | 80        |
| 46 | Mechanism of Laccase–TEMPO atalyzed Oxidation of Benzyl Alcohol. ChemCatChem, 2010, 2, 827-833.                                                                                                                            | 1.8  | 77        |
| 47 | Toward a Physically Sound Structureâ^'Activity Relationship of TiO <sub>2</sub> -Based Photocatalysts.<br>Journal of Physical Chemistry C, 2010, 114, 327-332.                                                             | 1.5  | 76        |
| 48 | Driving Surface Redox Reactions in Heterogeneous Photocatalysis: The Active State of Illuminated<br>Semiconductor-Supported Nanoparticles during Overall Water-Splitting. ACS Catalysis, 2018, 8,<br>9154-9164.            | 5.5  | 68        |
| 49 | A novel TiO2 composite for photocatalytic wastewater treatment. Journal of Catalysis, 2014, 310, 75-83.                                                                                                                    | 3.1  | 67        |
| 50 | Substrate Specificity in Photocatalytic Degradation of Mixtures of Organic Contaminants in Water.<br>ACS Catalysis, 2016, 6, 1254-1262.                                                                                    | 5.5  | 67        |
| 51 | In Situ Raman Study of Potentialâ€Đependent Surface Adsorbed Carbonate, CO, OH, and C Species on Cu<br>Electrodes During Electrochemical Reduction of CO <sub>2</sub> . ChemElectroChem, 2021, 8,<br>1478-1485.            | 1.7  | 67        |
| 52 | Real-time in situ ATR-FTIR analysis of the liquid phase hydrogenation of γ-butyrolactone over Cu-ZnO<br>catalysts: A mechanistic study by varying lactone ring size. Chemical Engineering Science, 2004, 59,<br>5479-5485. | 1.9  | 66        |
| 53 | How Gold Deposition Affects Anatase Performance in the Photo-catalytic Oxidation of Cyclohexane.<br>Catalysis Letters, 2009, 129, 12-19.                                                                                   | 1.4  | 64        |
| 54 | Porous Photocatalytic Membrane Microreactor (P2M2): A new reactor concept for photochemistry.<br>Journal of Photochemistry and Photobiology A: Chemistry, 2011, 225, 36-41.                                                | 2.0  | 61        |

| #  | Article                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | NO-Assisted N2O Decomposition over ex-Framework FeZSM-5: Mechanistic Aspects. Catalysis Letters, 2001, 77, 7-13.                                                                 | 1.4  | 60        |
| 56 | On the stability of the thermally decomposed Co-Al hydrotalcite against retrotopotactic transformation. Materials Research Bulletin, 2001, 36, 1767-1775.                        | 2.7  | 57        |
| 57 | Strategies to Design Efficient Silica-Supported Photocatalysts for Reduction of CO <sub>2</sub> .<br>Journal of the American Chemical Society, 2014, 136, 594-597.               | 6.6  | 56        |
| 58 | Bimetallic Cu-based hollow fibre electrodes for CO2 electroreduction. Catalysis Today, 2020, 346, 34-39.                                                                         | 2.2  | 55        |
| 59 | Photocatalytic oxidation of cyclohexane by titanium dioxide: Catalyst deactivation and regeneration.<br>Journal of Catalysis, 2010, 273, 199-210.                                | 3.1  | 54        |
| 60 | Photocatalytic Oxidation of Cyclohexane over TiO <sub>2</sub> : Evidence for a Marsâ^'van Krevelen<br>Mechanism. Journal of Physical Chemistry C, 2011, 115, 1330-1338.          | 1.5  | 54        |
| 61 | Fe, Co and Cu-incorporated TUD-1: Synthesis, characterization and catalytic performance in N2O decomposition and cyclohexane oxidation. Catalysis Today, 2005, 110, 264-271.     | 2.2  | 52        |
| 62 | TiO2 Nanoparticles in Mesoporous TUD-1: Synthesis, Characterization and Photocatalytic Performance<br>in Propane Oxidation. Chemistry - A European Journal, 2006, 12, 620-628.   | 1.7  | 52        |
| 63 | Feasibility study towards a Cu/K/Mo/(Cl) soot oxidation catalyst for application in diesel exhaust gases. Applied Catalysis B: Environmental, 1997, 11, 365-382.                 | 10.8 | 50        |
| 64 | Beyond Water Splitting: Efficiencies of Photoâ€Electrochemical Devices Producing Hydrogen and<br>Valuable Oxidation Products. Advanced Sustainable Systems, 2017, 1, 1600035.    | 2.7  | 50        |
| 65 | Highly active and stable ion-exchanged Fe–Ferrierite catalyst for N2O decomposition under nitric acid tail gas conditions. Catalysis Communications, 2005, 6, 301-305.           | 1.6  | 49        |
| 66 | Operando ATR-FTIR analysis of liquid-phase catalytic reactions: can heterogeneous catalysts be<br>observed?. Vibrational Spectroscopy, 2004, 34, 109-121.                        | 1.2  | 48        |
| 67 | Acrylate and propoxy-groups: Contributors to deactivation of Au/TiO2 in the epoxidation of propene.<br>Journal of Catalysis, 2009, 266, 286-290.                                 | 3.1  | 47        |
| 68 | Characterization and performance of Pt-USY in the SCR of NOx with hydrocarbons under lean-burn conditions. Applied Catalysis B: Environmental, 2001, 29, 285-298.                | 10.8 | 46        |
| 69 | Cyclohexane selective photocatalytic oxidation by anatase TiO2: influence of particle size and crystallinity. Physical Chemistry Chemical Physics, 2010, 12, 2744.               | 1.3  | 46        |
| 70 | Time-Dependent Photoluminescence of Nanostructured Anatase TiO <sub>2</sub> and the Role of Bulk and Surface Processes. Journal of Physical Chemistry C, 2019, 123, 26653-26661. | 1.5  | 46        |
| 71 | Ti3+-containing titania: Synthesis tactics and photocatalytic performance. Catalysis Today, 2015, 246,<br>60-66.                                                                 | 2.2  | 45        |
| 72 | Experimental evidence for electron localization on Au upon photo-activation of Au/anatase catalysts.<br>Physical Chemistry Chemical Physics, 2009, 11, 2708.                     | 1.3  | 44        |

| #  | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Infrared Analysis of Interfacial Phenomena during Electrochemical Reduction of CO <sub>2</sub><br>over Polycrystalline Copper Electrodes. ACS Catalysis, 2020, 10, 8049-8057.                                      | 5.5  | 44        |
| 74 | The effect of NOx and CO on the rate of transition metal oxide catalyzed carbon black oxidation: An exploratory study. Applied Catalysis B: Environmental, 1998, 17, 205-220.                                      | 10.8 | 43        |
| 75 | Understanding promotion of photocatalytic activity of TiO 2 by Au nanoparticles. Journal of Catalysis, 2014, 319, 194-199.                                                                                         | 3.1  | 43        |
| 76 | E. coli inactivation by visible light irradiation using a Fe–Cd/TiO 2 photocatalyst: Statistical analysis<br>and optimization of operating parameters. Applied Catalysis B: Environmental, 2015, 168-169, 441-447. | 10.8 | 43        |
| 77 | Decomposition of nitrous oxide over ZSM-5 catalysts. Studies in Surface Science and Catalysis, 1996, , 641-650.                                                                                                    | 1.5  | 40        |
| 78 | Following the evolution of iron from framework to extra-framework positions in isomorphously<br>substituted [Fe,Al]MFI with Fe M�ssbauer spectroscopy. Journal of Catalysis, 2005, 231, 56-66.                     | 3.1  | 40        |
| 79 | Synthesis, characterization and catalytic performance of Mo-TUD-1 catalysts in epoxidation of cyclohexene. Catalysis Science and Technology, 2012, 2, 1894.                                                        | 2.1  | 40        |
| 80 | Electrochemical generation of hydrogen peroxide using surface area-enhanced Ti-mesh electrodes.<br>Electrochimica Acta, 2007, 52, 6304-6309.                                                                       | 2.6  | 39        |
| 81 | Disposable Attenuated Total Reflection-Infrared Crystals from Silicon Wafer: A Versatile Approach to<br>Surface Infrared Spectroscopy. Analytical Chemistry, 2013, 85, 33-38.                                      | 3.2  | 39        |
| 82 | Photocatalytic Activity of ZnV <sub>2</sub> O <sub>6</sub> /Reduced Graphene Oxide Nanocomposite:<br>From Theory to Experiment. Journal of the Electrochemical Society, 2018, 165, H353-H359.                      | 1.3  | 39        |
| 83 | Comparative Analysis of Photocatalytic and Electrochemical Degradation of 4-Ethylphenol in Saline<br>Conditions. Environmental Science & Technology, 2019, 53, 8725-8735.                                          | 4.6  | 39        |
| 84 | Improved performance of TiO2 in the selective photo-catalytic oxidation of cyclohexane by increasing the rate of desorption through surface silylation. Journal of Catalysis, 2010, 273, 116-124.                  | 3.1  | 38        |
| 85 | Monitoring the catalytic synthesis of glycerol carbonate by real-time attenuated total reflection FTIR spectroscopy. Applied Catalysis A: General, 2011, 409-410, 106-112.                                         | 2.2  | 38        |
| 86 | High-throughput experimentation in catalyst testing and in kinetic studies for heterogeneous catalysis. Catalysis Today, 2003, 81, 457-471.                                                                        | 2.2  | 37        |
| 87 | MultiTRACK and operando Raman-GC study of oxidative dehydrogenation of propane over<br>alumina-supported vanadium oxide catalysts. Physical Chemistry Chemical Physics, 2003, 5, 4378-4383.                        | 1.3  | 37        |
| 88 | Synergy between metals in bimetallic zeolite supported catalyst for NO-promoted N2O decomposition.<br>Catalysis Letters, 2005, 99, 41-44.                                                                          | 1.4  | 37        |
| 89 | Sorptionâ€Determined Deposition of Platinum on Wellâ€Defined Platelike WO <sub>3</sub> . Angewandte<br>Chemie - International Edition, 2014, 53, 12476-12479.                                                      | 7.2  | 37        |
| 90 | Efficient catalytic epoxidation of olefins with silylated Ti-TUD-1 catalysts. Journal of Catalysis, 2008, 260, 288-294.                                                                                            | 3.1  | 36        |

| #   | Article                                                                                                                                                                                                                                  | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Electrochemical synthesis of coaxial TiO <sub>2</sub> –Ag nanowires and their application in photocatalytic water splitting. Journal of Materials Chemistry A, 2014, 2, 2648-2656.                                                       | 5.2  | 36        |
| 92  | Industrial feasibility of anodic hydrogen peroxide production through photoelectrochemical water splitting: a techno-economic analysis. Sustainable Energy and Fuels, 2020, 4, 3143-3156.                                                | 2.5  | 36        |
| 93  | Selective Electrochemical Oxidation of H <sub>2</sub> O to H <sub>2</sub> O <sub>2</sub> Using<br>Boron-Doped Diamond: An Experimental and Techno-Economic Evaluation. ACS Sustainable Chemistry<br>and Engineering, 2021, 9, 7803-7812. | 3.2  | 36        |
| 94  | A spectroscopic study of the effect of the trivalent cation on the thermal decomposition behaviour of Co-based hydrotalcites. Journal of Materials Chemistry, 2001, 11, 2529-2536.                                                       | 6.7  | 35        |
| 95  | Catalytic synthesis of methanethiol from hydrogen sulfide and carbon monoxide over vanadium-based catalysts. Catalysis Today, 2003, 78, 327-337.                                                                                         | 2.2  | 34        |
| 96  | Characterization of Fe sites in Fe-zeolites by FTIR spectroscopy of adsorbed NO: are the spectra obtained in static vacuum and dynamic flow set-ups comparable?. Physical Chemistry Chemical Physics, 2010, 12, 358-364.                 | 1.3  | 34        |
| 97  | N2O Decomposition over Liquid Ion-Exchanged Fe-BEA Catalysts: Correlation Between Activity and the IR Intensity of Adsorbed NO at 1874 cm-1. Catalysis Letters, 2004, 93, 113-120.                                                       | 1.4  | 33        |
| 98  | Ag-Functionalized CuWO <sub>4</sub> /WO <sub>3</sub> nanocomposites for solar water splitting.<br>New Journal of Chemistry, 2019, 43, 2196-2203.                                                                                         | 1.4  | 33        |
| 99  | Facetâ€Dependent Surface Charge and Hydration of Semiconducting Nanoparticles at Variable pH.<br>Advanced Materials, 2021, 33, e2106229.                                                                                                 | 11.1 | 33        |
| 100 | Identification of the role of surface acidity in the deactivation of TiO2 in the selective photo-oxidation of cyclohexane. Catalysis Today, 2009, 143, 326-333.                                                                          | 2.2  | 32        |
| 101 | The effect of Au on TiO2 catalyzed selective photocatalytic oxidation of cyclohexane. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 217, 326-332.                                                                       | 2.0  | 32        |
| 102 | An internally illuminated monolith reactor: Pros and cons relative to a slurry reactor. Catalysis<br>Today, 2009, 147, S324-S329.                                                                                                        | 2.2  | 31        |
| 103 | Promoting Photocatalytic Overall Water Splitting by Controlled Magnesium Incorporation in SrTiO <sub>3</sub> Photocatalysts. ChemSusChem, 2017, 10, 4510-4516.                                                                           | 3.6  | 31        |
| 104 | Efficient NO adsorption and release at Fe3+ sites in Fe/TiO2 nanoparticles. Energy and Environmental Science, 2011, 4, 2140.                                                                                                             | 15.6 | 30        |
| 105 | Assessing the Role of Pt Clusters on TiO <sub>2</sub> (P25) on the Photocatalytic Degradation of Acid<br>Blue 9 and Rhodamine B. Journal of Physical Chemistry C, 2020, 124, 8269-8278.                                                  | 1.5  | 30        |
| 106 | On the activation of Pt/Al2O3 catalysts in HC-SCR by sintering: determination of redox-active sites using Multitrack. Applied Catalysis B: Environmental, 2003, 46, 687-702.                                                             | 10.8 | 29        |
| 107 | Photocatalytic decomposition of cortisone acetate in aqueous solution. Journal of Hazardous<br>Materials, 2015, 282, 208-215.                                                                                                            | 6.5  | 29        |
| 108 | Direct N2O decomposition over ex-framework FeMFI catalysts. Role of extra-framework species.<br>Catalysis Communications, 2002, 3, 19-23.                                                                                                | 1.6  | 28        |

| #   | Article                                                                                                                                                                                                 | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Electrochemical characterization of iron sites in ex-framework FeZSM-5. Journal of Electroanalytical Chemistry, 2002, 519, 72-84.                                                                       | 1.9  | 28        |
| 110 | The effect of water on the performance of TiO2 in photocatalytic selective alkane oxidation. Journal of Catalysis, 2011, 277, 129-133.                                                                  | 3.1  | 28        |
| 111 | The effect of active sites' nature on the photo-catalytic performance of Cr-TUD-1 in the oxidation of C1–C3 hydrocarbons. Applied Catalysis B: Environmental, 2015, 174-175, 413-420.                   | 10.8 | 28        |
| 112 | Towards sustainable chlorate production: The effect of permanganate addition on current efficiency.<br>Journal of Cleaner Production, 2018, 182, 529-537.                                               | 4.6  | 27        |
| 113 | Photocatalytic hydrogen production by photo-reforming of methanol with one-pot synthesized<br>Pt-containing TiO2 photocatalysts. Catalysis Today, 2020, 356, 95-100.                                    | 2.2  | 27        |
| 114 | Selective photocatalytic oxidation of cyclohexanol to cyclohexanone: A spectroscopic and kinetic study. Chemical Engineering Journal, 2020, 382, 122732.                                                | 6.6  | 27        |
| 115 | A DRIFTS study of the interaction of alkali metal oxides with carbonaceous surfaces. Carbon, 1999, 37, 401-410.                                                                                         | 5.4  | 26        |
| 116 | Chromium-incorporated TUD-1 as a new visible light-sensitive photo-catalyst for selective oxidation of propane. Catalysis Today, 2006, 117, 337-342.                                                    | 2.2  | 26        |
| 117 | Effect of steaming of iron containing AlPO-5 on the structure and activity in N2O decomposition.<br>Microporous and Mesoporous Materials, 2008, 112, 193-201.                                           | 2.2  | 26        |
| 118 | Cyclohexene photo-oxidation over vanadia catalyst analyzed by time resolved ATR-FT-IR spectroscopy.<br>Physical Chemistry Chemical Physics, 2008, 10, 3131.                                             | 1.3  | 26        |
| 119 | Micromolding of solvent resistant microfluidic devices. Lab on A Chip, 2011, 11, 2035.                                                                                                                  | 3.1  | 26        |
| 120 | Insight into the origin of the limited activity and stability of p-Cu2O films in photoelectrochemical proton reduction. Electrochimica Acta, 2017, 245, 259-267.                                        | 2.6  | 26        |
| 121 | pH-Dependence in facet-selective photo-deposition of metals and metal oxides on semiconductor particles. Journal of Materials Chemistry A, 2018, 6, 7500-7508.                                          | 5.2  | 26        |
| 122 | Development of TiO2/Ti wire-mesh honeycomb for catalytic combustion of ethyl acetate in air. Applied<br>Catalysis A: General, 2006, 313, 86-93.                                                         | 2.2  | 25        |
| 123 | How Pt nanoparticles affect TiO2-induced gas-phase photocatalytic oxidation reactions. Journal of Catalysis, 2015, 324, 119-126.                                                                        | 3.1  | 25        |
| 124 | Reactivity of generated oxygen species from nitrous oxide over [Fe,Al]MFI catalysts for the direct oxidation of benzene to phenol. Catalysis Today, 2005, 110, 221-227.                                 | 2.2  | 24        |
| 125 | Electrochemically Induced pH Change: Time-Resolved Confocal Fluorescence Microscopy<br>Measurements and Comparison with Numerical Model. Journal of Physical Chemistry Letters, 2020, 11,<br>7042-7048. | 2.1  | 24        |
| 126 | Carbon-nitrogen bond formation on Cu electrodes during CO2 reduction in NO3- solution. Applied Catalysis B: Environmental, 2022, 316, 121512.                                                           | 10.8 | 24        |

| #   | Article                                                                                                                                                                                                                                | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Combined ATR-FTIR and DFT Study of Cyclohexanone Adsorption on Hydrated TiO <sub>2</sub> Anatase<br>Surfaces. Journal of Physical Chemistry C, 2011, 115, 14164-14172.                                                                 | 1.5  | 23        |
| 128 | Controlled Doping Methods for Radial p/n Junctions in Silicon. Advanced Energy Materials, 2015, 5, 1401745.                                                                                                                            | 10.2 | 23        |
| 129 | Effect of Temperature and pH on Phase Transformations in Citric Acid Mediated Hydrothermal Growth of Tungsten Oxide. European Journal of Inorganic Chemistry, 2018, 2018, 917-923.                                                     | 1.0  | 23        |
| 130 | Pulsed electrochemical synthesis of formate using Pb electrodes. Applied Catalysis B: Environmental, 2020, 268, 118420.                                                                                                                | 10.8 | 23        |
| 131 | FAPO and Fe-TUD-1: Promising catalysts for N2O mediated selective oxidation of propane?. Journal of Catalysis, 2009, 262, 1-8.                                                                                                         | 3.1  | 22        |
| 132 | Attenuated Total Reflection-Infrared Nanofluidic Chip with 71 nL Detection Volume for <i>in Situ</i> Spectroscopic Analysis of Chemical Reaction Intermediates. Analytical Chemistry, 2012, 84, 3132-3137.                             | 3.2  | 22        |
| 133 | ZnO Nanowire Networks as Photoanode Model Systems for Photoelectrochemical Applications.<br>Nanomaterials, 2018, 8, 693.                                                                                                               | 1.9  | 22        |
| 134 | CrO <sub>x</sub> -Mediated Performance Enhancement of Ni/NiO-Mg:SrTiO <sub>3</sub> in<br>Photocatalytic Water Splitting. ACS Catalysis, 2021, 11, 11049-11058.                                                                         | 5.5  | 22        |
| 135 | Functioning devices for solar to fuel conversion. Chemical Engineering and Processing: Process<br>Intensification, 2012, 51, 137-149.                                                                                                  | 1.8  | 21        |
| 136 | In situ formed vanadium-oxide cathode coatings for selective hydrogen production. Applied Catalysis<br>B: Environmental, 2019, 244, 233-239.                                                                                           | 10.8 | 21        |
| 137 | Effect of preparation procedures on the activity of supported palladium/lanthanum methanol decomposition catalysts. Catalysis Today, 2001, 65, 69-75.                                                                                  | 2.2  | 20        |
| 138 | Synthesis of photocatalytic TiO2 nano-coatings by supersonic cluster beam deposition. Journal of Alloys and Compounds, 2014, 615, S467-S471.                                                                                           | 2.8  | 20        |
| 139 | Photocatalytic methanol assisted production of hydrogen with simultaneous degradation of methyl orange. Applied Catalysis A: General, 2016, 518, 206-212.                                                                              | 2.2  | 19        |
| 140 | The Effect of Methanol on the Photodeposition of Pt Nanoparticles on Tungsten Oxide. Particle and<br>Particle Systems Characterization, 2018, 35, 1700250.                                                                             | 1.2  | 19        |
| 141 | Systematic variation of 57Fe and Al content in isomorphously substituted 57FeZSM-5 zeolites: preparation and characterization. Microporous and Mesoporous Materials, 2004, 75, 237-246.                                                | 2.2  | 18        |
| 142 | Product desorption limitations in selective photocatalytic oxidation. Catalysis Today, 2010, 155, 302-310.                                                                                                                             | 2.2  | 18        |
| 143 | Effects of bismuth addition and photo-deposition of platinum on (surface) composition, morphology<br>and visible light photocatalytic activity of sol–gel derived TiO2. Applied Catalysis B: Environmental,<br>2014, 154-155, 153-160. | 10.8 | 18        |
| 144 | Correlating the Short-Time Current Response of a Hydrogen Evolving Nickel Electrode to Bubble<br>Growth. Journal of the Electrochemical Society, 2019, 166, E280-E285.                                                                 | 1.3  | 18        |

| #   | Article                                                                                                                                                                                                        | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Elucidation of the Surprising Role of NO in N2O Decomposition over FeZSM-5. Kinetics and Catalysis, 2003, 44, 639-647.                                                                                         | 0.3  | 17        |
| 146 | Dispersion and Distribution of Ruthenium on Carbon-Coated Ceramic Monolithic Catalysts Prepared by Impregnation. Catalysis Letters, 2003, 90, 181-186.                                                         | 1.4  | 17        |
| 147 | Photo-catalytic oxidation of cyclohexane over TiO <sub>2</sub> : a novel interpretation of temperature dependent performance. Physical Chemistry Chemical Physics, 2011, 13, 1345-1355.                        | 1.3  | 17        |
| 148 | Effects of Support, Particle Size, and Process Parameters on Co3O4Catalyzed H2O Oxidation Mediated by the [Ru(bpy)3]2+Persulfate System. ChemCatChem, 2013, 5, 550-556.                                        | 1.8  | 17        |
| 149 | Catalytic Characterization of Mesoporous Ti–Silica Hollow Spheres. Catalysis Letters, 2006, 109, 207-210.                                                                                                      | 1.4  | 16        |
| 150 | The effect of Rh <sup>l̃'+</sup> dopant in SrTiO <sub>3</sub> on the active oxidation state of co-catalytic Pt nanoparticles in overall water splitting. Catalysis Science and Technology, 2016, 6, 7793-7799. | 2.1  | 16        |
| 151 | Unraveling the Mechanisms of Beneficial Cu-Doping of NiO-Based Photocathodes. Journal of Physical<br>Chemistry C, 2021, 125, 16049-16058.                                                                      | 1.5  | 16        |
| 152 | An Experimental Facility for the Study of Coal Pyrolysis at 10 Atmospheres. Energy & Fuels, 2000,<br>14, 692-700.                                                                                              | 2.5  | 15        |
| 153 | Dual Role of Surface Hydroxyl Groups in the Photodynamics and Performance of NiO-Based<br>Photocathodes. Journal of the American Chemical Society, 2022, 144, 11010-11018.                                     | 6.6  | 15        |
| 154 | Characterization of Iron Species in Ex-Framework FeZSM-5 by Electrochemical Methods. Catalysis<br>Letters, 2002, 78, 303-312.                                                                                  | 1.4  | 14        |
| 155 | On the Wavelength-Dependent Performance of Cr-Doped Silica in Selective Photo-Oxidation. Journal of Physical Chemistry C, 2008, 112, 5471-5475.                                                                | 1.5  | 14        |
| 156 | The influence of water vapour on the photocatalytic oxidation of cyclohexane in an internally illuminated monolith reactor. Applied Catalysis A: General, 2014, 470, 63-71.                                    | 2.2  | 14        |
| 157 | Spatioselective Electrochemical and Photoelectrochemical Functionalization of Silicon Microwires with Axial p/n Junctions. Advanced Materials, 2016, 28, 1400-1405.                                            | 11.1 | 14        |
| 158 | Stability of Ag@SiO 2 core–shell particles in conditions of photocatalytic overall water-splitting.<br>Journal of Energy Chemistry, 2017, 26, 309-314.                                                         | 7.1  | 14        |
| 159 | High throughput screening of photocatalytic conversion of pharmaceutical contaminants in water.<br>Environmental Pollution, 2017, 220, 1199-1207.                                                              | 3.7  | 14        |
| 160 | Electrochemical formation of Cr(III)-based films on Au electrodes. Electrochimica Acta, 2019, 296, 1115-1121.                                                                                                  | 2.6  | 14        |
| 161 | Mechanism and Micro Kinetic Model for Electroreduction of CO <sub>2</sub> on Pd/C: The Role of Different Palladium Hydride Phases. ACS Catalysis, 2021, 11, 6883-6891.                                         | 5.5  | 14        |
| 162 | Ultrafast Photoinduced Heat Generation by Plasmonic HfN Nanoparticles. Advanced Optical Materials,<br>2021, 9, 2100510.                                                                                        | 3.6  | 14        |

| #   | Article                                                                                                                                                                                                                       | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | Investigation of the Deactivation Phenomena Occurring in the Cyclohexane Photocatalytic Oxidative<br>Dehydrogenation on MoOx/TiO2 through Gas Phase and in situ DRIFTS Analyses. Catalysts, 2013, 3,<br>978-997.              | 1.6  | 13        |
| 164 | Catalytic methyl mercaptan coupling to ethylene in chabazite: DFT study of the first C C bond formation. Applied Catalysis B: Environmental, 2016, 187, 195-203.                                                              | 10.8 | 13        |
| 165 | Optimizing CO Coverage on Rough Copper Electrodes: Effect of the Partial Pressure of CO and<br>Electrolyte Anions (pH) on Selectivity toward Ethylene. Journal of Physical Chemistry C, 2021, 125,<br>6546-6554.              | 1.5  | 13        |
| 166 | Optimizing the Ink Formulation for Preparation of Cu-Based Gas Diffusion Electrodes Yielding Ethylene in Electroreduction of CO <sub>2</sub> . ACS ES&T Engineering, 2021, 1, 1649-1658.                                      | 3.7  | 13        |
| 167 | Comments on "Infrared emission spectroscopic studies of the thermal transformation of Mg-, Ni- and<br>Co-hydrotalcite catalysts―[Appl. Catal. A: Gen. 184 (1999) 61–71]. Applied Catalysis A: General, 2000, 204,<br>265-267. | 2.2  | 11        |
| 168 | On the pathway of photoexcited electrons: probing photon-to-electron and photon-to-phonon conversions in silicon by ATR-IR. Physical Chemistry Chemical Physics, 2012, 14, 10882.                                             | 1.3  | 11        |
| 169 | TUDâ€1â€Encapsulated HY Zeolite: A New Hierarchical Microporous/Mesoporous Composite with Extraordinary Performance in Benzylation Reactions. ChemCatChem, 2013, 5, 3156-3163.                                                | 1.8  | 11        |
| 170 | Modulating the External Facets of Functional Nanocrystals Enabled by Two-Dimensional Oxide<br>Crystal Templates. ACS Catalysis, 2017, 7, 6858-6863.                                                                           | 5.5  | 11        |
| 171 | Electrochemical oxidation of H2S on polycrystalline Ni electrodes. Journal of Applied<br>Electrochemistry, 2019, 49, 929-936.                                                                                                 | 1.5  | 11        |
| 172 | Effect of partial pressure on product selectivity in Cu-catalyzed electrochemical reduction of CO <sub>2</sub> . Sustainable Energy and Fuels, 2020, 4, 5195-5202.                                                            | 2.5  | 11        |
| 173 | Impact of Pressure Variations on Coal Devolatilization Products. 2. Detailed Product Distributions from 1.0 MPa. Energy & amp; Fuels, 2004, 18, 520-530.                                                                      | 2.5  | 10        |
| 174 | High Throughput Analysis of Photocatalytic Water Purification. Analytical Chemistry, 2014, 86, 7612-7617.                                                                                                                     | 3.2  | 10        |
| 175 | Preparation of Ti, Ti/TiC or Ti/TiN based hollow fibres with extremely low electrical resistivity. RSC Advances, 2020, 10, 31901-31908.                                                                                       | 1.7  | 10        |
| 176 | Reaction Kinetics and Intermediate Determination of Solid Acid Catalysed Liquid-phase Hydrolysis<br>Reactions: A Real-time in situ ATR FT-IR Study. Catalysis Letters, 2006, 109, 199-206.                                    | 1.4  | 9         |
| 177 | Selective Hydrothermal Method To Create Patterned and Photoelectrochemically Effective<br>Pt/WO <sub>3</sub> Interfaces. ACS Applied Materials & Interfaces, 2013, 5, 13050-13054.                                            | 4.0  | 9         |
| 178 | Overall mass balance evaluation of electrochemical reactors: The case of CO2 reduction.<br>Electrochimica Acta, 2020, 333, 135460.                                                                                            | 2.6  | 9         |
| 179 | Silver Nanocubes Coated in Ceria: Core/Shell Size Effects on Light-Induced Charge Transfer. ACS<br>Applied Materials & Interfaces, 2020, 12, 1905-1912.                                                                       | 4.0  | 9         |
| 180 | Modular microreactor with integrated reflection element for online reaction monitoring using infrared spectroscopy. Lab on A Chip, 2020, 20, 4166-4174.                                                                       | 3.1  | 9         |

| #   | Article                                                                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Advanced oxidation processes for removal of organics from cooling tower blowdown: Efficiencies and evaluation of chlorinated species. Separation and Purification Technology, 2021, 278, 119537.   | 3.9 | 9         |
| 182 | Effect of Electrolyte and Electrode Configuration on Cuâ€Catalyzed Nitric Oxide Reduction to<br>Ammonia. ChemElectroChem, 2022, 9, .                                                               | 1.7 | 9         |
| 183 | Catalytic oxidation of model soot by chlorine based catalysts. Studies in Surface Science and Catalysis, 1998, 116, 645-654.                                                                       | 1.5 | 8         |
| 184 | Room Temperature Oxidation of Ethanol to Acetaldehyde over Pt/WO <sub>3</sub> . Advanced Materials Interfaces, 2016, 3, 1600266.                                                                   | 1.9 | 8         |
| 185 | Integration of Molybdenum-Doped, Hydrogen-Annealed BiVO <sub>4</sub> with Silicon Microwires for Photoelectrochemical Applications. ACS Sustainable Chemistry and Engineering, 2019, 7, 5034-5044. | 3.2 | 8         |
| 186 | Photocatalytic Oxidation of Propane Using Hydrothermally Prepared Anatase-Brookite-Rutile TiO2<br>Samples. An In Situ DRIFTS Study. Nanomaterials, 2020, 10, 1314.                                 | 1.9 | 8         |
| 187 | Electroreduction of NO <sub>3</sub> <sup>â^'</sup> on tubular porous Ti electrodes. Catalysis Science<br>and Technology, 2022, 12, 3281-3288.                                                      | 2.1 | 8         |
| 188 | Mechanistic study of decomposition of cyclohexyl hydroperoxide catalysed by manganese(III)<br>tetraarylporphyrins. Recueil Des Travaux Chimiques Des Pays-Bas, 1993, 112, 497-502.                 | 0.0 | 7         |
| 189 | Applicability of Fiber-Optic-Based Raman Probes for On-Line Reaction Monitoring of High-Pressure<br>Catalytic Hydrogenation Reactions. Applied Spectroscopy, 2007, 61, 470-478.                    | 1.2 | 7         |
| 190 | Bottom-mounted ATR probes: Pitfalls that arise from gravitational effects. Catalysis Today, 2007, 126, 184-190.                                                                                    | 2.2 | 7         |
| 191 | Magnetically-extractable hybrid of magnetite, mesoporous silica and titania for the photo-degradation of organic compounds in water. Applied Surface Science, 2018, 457, 121-133.                  | 3.1 | 6         |
| 192 | Electroconvective Instability in Water Electrolysis: An Evaluation of Electroconvective Patterns and<br>Their Onset Features. Physical Review Applied, 2021, 16, .                                 | 1.5 | 6         |
| 193 | Selective Modulation of Chargeâ€Carrier Transport of a Photoanode in a Photoelectrochemical Cell by<br>a Graphitized Fullerene Interfacial Layer. ChemSusChem, 2015, 8, 172-176.                   | 3.6 | 5         |
| 194 | Size-tunable TiO2 nanoparticles in mesoporous silica: Size-dependent performance in selective photo-oxidation. Journal of Molecular Structure, 2020, 1200, 127113.                                 | 1.8 | 5         |
| 195 | Electrochemical preparation of defect-engineered titania: Bulk doping versus surface contamination.<br>Applied Surface Science, 2021, 539, 148136.                                                 | 3.1 | 5         |
| 196 | Mixed Chromate and Molybdate Additives for Cathodic Enhancement in the Chlorate Process.<br>Electrocatalysis, 2021, 12, 447-455.                                                                   | 1.5 | 5         |
| 197 | Optimizing Temperature Treatment of Copper Hollow Fibers for the Electrochemical Reduction of CO2 to CO. Catalysts, 2021, 11, 571.                                                                 | 1.6 | 5         |
| 198 | Study on the Effect of Electrolyte pH during Kolbe Electrolysis of Acetic Acid on Pt Anodes.<br>ChemCatChem, 2022, 14, .                                                                           | 1.8 | 5         |

| #   | Article                                                                                                                                                                                      | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 199 | Transient kinetics of the propene oxidation over silver catalysts. Studies in Surface Science and Catalysis, 2001, , 365-372.                                                                | 1.5  | 3         |
| 200 | 30-O-02-Characterization and performance of ex-framework FeZSM-5 in catalytic N2O decomposition. Studies in Surface Science and Catalysis, 2001, , 172.                                      | 1.5  | 3         |
| 201 | Photoactive Area Dependent Electrochemical Characteristics of Photoelectrochemical Cells. Journal of the Electrochemical Society, 2016, 163, H105-H109.                                      | 1.3  | 3         |
| 202 | Cathodic Electrodeposition of Niâ^'Mo on Semiconducting NiFe <sub>2</sub> O <sub>4</sub> for<br>Photoelectrochemical Hydrogen Evolution in Alkaline Media. ChemSusChem, 2018, 11, 1374-1381. | 3.6  | 3         |
| 203 | Increased hydrogen partial pressure suppresses and reverses hydrogen evolution during Pd catalysed electrolysis of CO <sub>2</sub> . Sustainable Energy and Fuels, 2020, 4, 4459-4463.       | 2.5  | 3         |
| 204 | Bi-functionality of Fe-TUD-1 mesoporous material in Friedel-Crafts' type reactions. Studies in Surface<br>Science and Catalysis, 2005, , 1509-1516.                                          | 1.5  | 2         |
| 205 | Characterization of opto-electrical enhancement of tandem photoelectrochemical cells by using photoconductive-AFM. Nanotechnology, 2017, 28, 295401.                                         | 1.3  | 2         |
| 206 | Solar Energy Utilization and Photo(electro)catalysis for Sustainable Environment. ACS ES&T<br>Engineering, 2022, 2, 940-941.                                                                 | 3.7  | 2         |
| 207 | Highly Active and Stable Pt-USY in the Low-Temperature de-NOx HC-SCR. Reaction Kinetics and Catalysis<br>Letters, 2000, 71, 33-40.                                                           | 0.6  | 1         |
| 208 | Transient kinetics of 15NO-decomposition on Pt/Al2O3. Studies in Surface Science and Catalysis, 2001, , 357-364.                                                                             | 1.5  | 1         |
| 209 | A synergistic effect in Iron-Ruthenium-FER catalyst for N2O decomposition in the presence of NO.<br>Studies in Surface Science and Catalysis, 2005, 158, 1915-1920.                          | 1.5  | 1         |
| 210 | Isolated low-valent nickel. Nature Energy, 2018, 3, 90-91.                                                                                                                                   | 19.8 | 1         |
| 211 | Conversion of a CO–CO 2 coâ€feed with a porous tubular copper catalyst at low potential.<br>Electrochemical Science Advances, 0, , .                                                         | 1.2  | 1         |
| 212 | Gas flow Stimulated Hydrodynamics for Preparation and Application of Platinized Titanium Hollow<br>Fibre Electrodes. ChemElectroChem, 2022, 9, .                                             | 1.7  | 1         |
| 213 | Probing the Redox States of Iron in Steam-Treated Isomorphously Substituted [Fe,Al]MFI Catalyst. AIP<br>Conference Proceedings, 2005, , .                                                    | 0.3  | 0         |
| 214 | Structure and performance in propane ODH of Vanadia incorporated in (Ti-, Zr-)TUD-1. Studies in<br>Surface Science and Catalysis, 2007, 170, 1190-1196.                                      | 1.5  | 0         |
| 215 | Dual-Bed Catalytic System for Removal of NOx-N2O in Lean-Burn Engine Exhausts. , 2002, , 229-243.                                                                                            |      | 0         |
| 216 | Thermal decomposition of layered Co-Al hydrotalcite An in situ study. , 2003, , 631-638.                                                                                                     |      | 0         |

| #   | Article                                                                                                                          | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Photocatalysis: Toward Solar Fuels and Chemicals. , 2012, , 491-512.                                                             |     | 0         |
| 218 | Chapter 9. Photocatalytic CO2 Conversion to Fuels by Novel Green Photocatalytic Materials. RSC Green Chemistry, 2015, , 202-239. | 0.0 | 0         |
| 219 | Chapter 1. Introduction to Green Nanostructured Photocatalysts. RSC Green Chemistry, 2015, , 1-12.                               | 0.0 | 0         |

220 Facetâ€Dependent Surface Charge and Hydration of Semiconducting Nanoparticles at Variable pH (Adv.) Tj ETQq0 0.0 rgBT /Overlock 1