
Akihiro Matsui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4301025/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Arabidopsis Transcriptome Analysis under Drought, Cold, High-Salinity and ABA Treatment Conditions using a Tiling Array. Plant and Cell Physiology, 2008, 49, 1135-1149.	3.1	475
2	Alterations of Lysine Modifications on the Histone H3 N-Tail under Drought Stress Conditions in Arabidopsis thaliana. Plant and Cell Physiology, 2008, 49, 1580-1588.	3.1	308
3	Acetate-mediated novel survival strategy against drought in plants. Nature Plants, 2017, 3, 17097.	9.3	232
4	Transition of Chromatin Status During the Process of Recovery from Drought Stress in Arabidopsis thaliana. Plant and Cell Physiology, 2012, 53, 847-856.	3.1	208
5	Genome-wide suppression of aberrant mRNA-like noncoding RNAs by NMD in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2453-2458.	7.1	165
6	Arabidopsis HDA6 Regulates Locus-Directed Heterochromatin Silencing in Cooperation with MET1. PLoS Genetics, 2011, 7, e1002055.	3.5	148
7	Transcriptome Analyses of a Salt-Tolerant Cytokinin-Deficient Mutant Reveal Differential Regulation of Salt Stress Response by Cytokinin Deficiency. PLoS ONE, 2012, 7, e32124.	2.5	146
8	Genome-wide analysis of endogenous abscisic acid-mediated transcription in dry and imbibed seeds of Arabidopsis using tiling arrays. Plant Journal, 2010, 62, 39-51.	5.7	109
9	A Stress-Activated Transposon in Arabidopsis Induces Transgenerational Abscisic Acid Insensitivity. Scientific Reports, 2016, 6, 23181.	3.3	106
10	Transcriptome Analysis Using a High-Density Oligomicroarray under Drought Stress in Various Genotypes of Cassava: An Important Tropical Crop. DNA Research, 2012, 19, 335-345.	3.4	101
11	Transcriptomic Analysis of Soil-Grown Arabidopsis thaliana Roots and Shoots in Response to a Drought Stress. Frontiers in Plant Science, 2016, 7, 180.	3.6	94
12	Ethanol Enhances High-Salinity Stress Tolerance by Detoxifying Reactive Oxygen Species in Arabidopsis thaliana and Rice. Frontiers in Plant Science, 2017, 8, 1001.	3.6	86
13	AtXTH27 plays an essential role in cell wall modification during the development of tracheary elements. Plant Journal, 2005, 42, 525-534.	5.7	80
14	Analysis of Differential Expression Patterns of mRNA and Protein During Cold-acclimation and De-acclimation in Arabidopsis. Molecular and Cellular Proteomics, 2014, 13, 3602-3611.	3.8	78
15	The Distinct Roles of Class I and II RPD3-Like Histone Deacetylases in Salinity Stress Response. Plant Physiology, 2017, 175, 1760-1773.	4.8	76
16	Recent advances in the characterization of plant transcriptomes in response to drought, salinity, heat, and cold stress. F1000Research, 2019, 8, 658.	1.6	74
17	Acetic Acid Treatment Enhances Drought Avoidance in Cassava (Manihot esculenta Crantz). Frontiers in Plant Science, 2019, 10, 521.	3.6	65
18	Ky-2, a Histone Deacetylase Inhibitor, Enhances High-Salinity Stress Tolerance in <i>Arabidopsis thaliana</i> . Plant and Cell Physiology, 2016, 57, 776-783.	3.1	58

Akihiro Matsui

#	Article	IF	CITATIONS
19	RNA regulation in plant abiotic stress responses. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2012, 1819, 149-153.	1.9	57
20	Loss of Arabidopsis 5′–3′ Exoribonuclease AtXRN4 Function Enhances Heat Stress Tolerance of Plants Subjected to Severe Heat Stress. Plant and Cell Physiology, 2015, 56, 1762-1772.	3.1	57
21	Identification of the candidate genes regulated by RNA-directed DNA methylation in Arabidopsis. Biochemical and Biophysical Research Communications, 2008, 376, 553-557.	2.1	54
22	Transduction of RNA-directed DNA methylation signals to repressive histone marks in Arabidopsis thaliana. EMBO Journal, 2010, 29, 352-362.	7.8	49
23	Arabidopsis Non-Coding RNA Regulation in Abiotic Stress Responses. International Journal of Molecular Sciences, 2013, 14, 22642-22654.	4.1	47
24	The Histone Deacetylase Inhibitor Suberoylanilide Hydroxamic Acid Alleviates Salinity Stress in Cassava. Frontiers in Plant Science, 2016, 7, 2039.	3.6	47
25	tasiRNA-ARF Pathway Moderates Floral Architecture in <i>Arabidopsis</i> Plants Subjected to Drought Stress. BioMed Research International, 2014, 2014, 1-10.	1.9	44
26	Oligouridylate Binding Protein 1b Plays an Integral Role in Plant Heat Stress Tolerance. Frontiers in Plant Science, 2016, 7, 853.	3.6	43
27	Arabidopsis molybdenum cofactor sulfurase ABA3 contributes to anthocyanin accumulation and oxidative stress tolerance in ABA-dependent and independent ways. Scientific Reports, 2018, 8, 16592.	3.3	43
28	Cassava (Manihot esculenta) transcriptome analysis in response to infection by the fungus Colletotrichum gloeosporioides using an oligonucleotide-DNA microarray. Journal of Plant Research, 2016, 129, 711-726.	2.4	28
29	Arabidopsis Tiling Array Analysis to Identify the Stress-Responsive Genes. Methods in Molecular Biology, 2010, 639, 141-155.	0.9	27
30	Biological Function of Changes in RNA Metabolism in Plant Adaptation to Abiotic Stress. Plant and Cell Physiology, 2019, 60, 1897-1905.	3.1	27
31	Sm-Like Protein-Mediated RNA Metabolism Is Required for Heat Stress Tolerance in Arabidopsis. Frontiers in Plant Science, 2016, 7, 1079.	3.6	26
32	Integrative omics approaches revealed a crosstalk among phytohormones during tuberous root development in cassava. Plant Molecular Biology, 2022, 109, 249-269.	3.9	26
33	The AtXTH28 Gene, a Xyloglucan Endotransglucosylase/Hydrolase, is Involved in Automatic Self-Pollination in Arabidopsis thaliana. Plant and Cell Physiology, 2008, 50, 413-422.	3.1	24
34	Transcriptome analysis of soybean (Glycine max) root genes differentially expressed in rhizobial, arbuscular mycorrhizal, and dual symbiosis. Journal of Plant Research, 2019, 132, 541-568.	2.4	22
35	PtWOX11 acts as master regulator conducting the expression of key transcription factors to induce de novo shoot organogenesis in poplar. Plant Molecular Biology, 2018, 98, 389-406.	3.9	21
36	Formation of friable embryogenic callus in cassava is enhanced under conditions of reduced nitrate, potassium and phosphate. PLoS ONE, 2017, 12, e0180736.	2.5	20

Akihiro Matsui

#	Article	IF	CITATIONS
37	Versatility of HDA19-deficiency in increasing the tolerance of Arabidopsis to different environmental stresses. Plant Signaling and Behavior, 2018, 13, 1-4.	2.4	20
38	Transcriptomic analysis of Arabidopsis thaliana plants treated with the Ky-9 and Ky-72 histone deacetylase inhibitors. Plant Signaling and Behavior, 2018, 13, e1448333.	2.4	19
39	Transcriptome Analyses Revealed Diverse Expression Changes in ago1 and hyl1 Arabidopsis Mutants. Plant and Cell Physiology, 2009, 50, 1715-1720.	3.1	18
40	Novel Stress-Inducible Antisense RNAs of Protein-Coding Loci Are Synthesized by RNA-Dependent RNA Polymerase. Plant Physiology, 2017, 175, 457-472.	4.8	16
41	ARTADE2DB: Improved Statistical Inferences for Arabidopsis Gene Functions and Structure Predictions by Dynamic Structure-Based Dynamic Expression (DSDE) Analyses. Plant and Cell Physiology, 2011, 52, 254-264.	3.1	15
42	Overexpression of oligouridylate binding protein 1b results in ABA hypersensitivity. Plant Signaling and Behavior, 2017, 12, e1282591.	2.4	15
43	The Involvement of Long Noncoding RNAs in Response to Plant Stress. Methods in Molecular Biology, 2019, 1933, 151-171.	0.9	15
44	Field transcriptome analysis reveals a molecular mechanism for cassava-flowering in a mountainous environment in Southeast Asia. Plant Molecular Biology, 2022, 109, 233-248.	3.9	14
45	Overexpression of nicotinamidase 3 (NIC3) gene and the exogenous application of nicotinic acid (NA) enhance drought tolerance and increase biomass in Arabidopsis. Plant Molecular Biology, 2021, 107, 63-84.	3.9	14
46	Drought stress differentially regulates the expression of small open reading frames (sORFs) in Arabidopsis roots and shoots. Plant Signaling and Behavior, 2016, 11, e1215792.	2.4	13
47	Transcriptome Analysis of the Hierarchical Response of Histone Deacetylase Proteins That Respond in an Antagonistic Manner to Salinity Stress. Frontiers in Plant Science, 2019, 10, 1323.	3.6	13
48	Inhibition of mitochondrial complex I by the novel compound FSL0260 enhances high salinity-stress tolerance in Arabidopsis thaliana. Scientific Reports, 2020, 10, 8691.	3.3	11
49	Transcriptome Analysis of Plant Drought and Salt Stress Response. , 2007, , 261-283.		8
50	Positional correlation analysis improves reconstruction of full-length transcripts and alternative isoforms from noisy array signals or short reads. Bioinformatics, 2012, 28, 929-937.	4.1	6
51	Transcriptome Analysis of Arabidopsis thaliana Plants Treated with a New Compound Natolen128, Enhancing Salt Stress Tolerance. Plants, 2021, 10, 978.	3.5	6
52	Highly Reproducible ChIP-on-Chip Analysis to Identify Genome-Wide Protein Binding and Chromatin Status in Arabidopsis thaliana. Methods in Molecular Biology, 2014, 1062, 405-426.	0.9	6
53	Ethanol induces heat tolerance in plants by stimulating unfolded protein response. Plant Molecular Biology, 2022, 110, 131-145.	3.9	6
54	Alterations of Lysine Modifications on the Histone H3 N-Tail under Drought Stress Conditions in Arabidopsis thaliana. Plant and Cell Physiology, 2009, 50, 1856-1856.	3.1	5

#	Article	lF	CITATIONS
55	Microarray Analysis for Studying the Abiotic Stress Responses in Plants. , 2010, , 333-355.		4
56	Monitoring Transcriptomic Changes in Soil-Grown Roots and Shoots of Arabidopsis thaliana Subjected to a Progressive Drought Stress. Methods in Molecular Biology, 2018, 1761, 223-230.	0.9	3
57	The duration of ethanol-induced high-salinity stress tolerance in <i>Arabidopsis thaliana</i> . Plant Signaling and Behavior, 2018, 13, 1-3.	2.4	3