Anna K Swan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4300761/publications.pdf Version: 2024-02-01

ANNA K SWAN

#	Article	IF	CITATIONS
1	Transfer of CVD-Grown Monolayer Graphene onto Arbitrary Substrates. ACS Nano, 2011, 5, 6916-6924.	7.3	1,258
2	Band Gap Engineering with Ultralarge Biaxial Strains in Suspended Monolayer MoS ₂ . Nano Letters, 2016, 16, 5836-5841.	4.5	443
3	Island Diffusion and Coarsening on Metal (100) Surfaces. Physical Review Letters, 1997, 79, 3210-3213.	2.9	205
4	Biaxial Strain in Graphene Adhered to Shallow Depressions. Nano Letters, 2010, 10, 6-10.	4.5	193
5	Self-Trapping of Excitons, Violation of Condon Approximation, and Efficient Fluorescence in Conjugated Cycloparaphenylenes. Nano Letters, 2014, 14, 6539-6546.	4.5	142
6	Dimer Shearing as a Novel Mechanism for Cluster Diffusion and Dissociation on Metal (100) Surfaces. Physical Review Letters, 1996, 76, 4927-4930.	2.9	117
7	Long tailed trions in monolayer MoS2: Temperature dependent asymmetry and resulting red-shift of trion photoluminescence spectra. Scientific Reports, 2017, 7, 14062.	1.6	106
8	DNA conformation on surfaces measured by fluorescence self-interference. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2623-2628.	3.3	103
9	How Graphene Slides: Measurement and Theory of Strain-Dependent Frictional Forces between Graphene and SiO ₂ . Nano Letters, 2013, 13, 2605-2610.	4.5	100
10	Competing spring constant versus double resonance effects on the properties of dispersive modes in isolated single-wall carbon nanotubes. Physical Review B, 2003, 67, .	1.1	88
11	Screening of Excitons in Single, Suspended Carbon Nanotubes. Nano Letters, 2007, 7, 1485-1488.	4.5	81
12	Raman spectroscopy of carbon nanohoops. Carbon, 2014, 67, 203-213.	5.4	70
13	Thermal conductance imaging of graphene contacts. Journal of Applied Physics, 2014, 116, .	1.1	69
14	Lattice-corrected strain-induced vector potentials in graphene. Physical Review B, 2012, 85, .	1.1	64
15	Graphene plasmonic devices for terahertz optoelectronics. Nanophotonics, 2020, 9, 1901-1920.	2.9	59
16	The Role of Length and Defects on Optical Quantum Efficiency and Exciton Decay Dynamics in Single-Walled Carbon Nanotubes. ACS Nano, 2011, 5, 647-655.	7.3	57
17	Probing the electronic trigonal warping effect in individual single-wall carbon nanotubes using phonon spectra. Chemical Physics Letters, 2002, 354, 62-68.	1.2	51
18	Violation of the Condon Approximation in Semiconducting Carbon Nanotubes. ACS Nano, 2011, 5, 5233-5241.	7.3	51

Anna K Swan

#	Article	IF	CITATIONS
19	Monolayer MoS ₂ Strained to 1.3% With a Microelectromechanical System. Journal of Microelectromechanical Systems, 2019, 28, 254-263.	1.7	45
20	Current-Driven Terahertz Light Emission from Graphene Plasmonic Oscillations. ACS Photonics, 2019, 6, 2562-2569.	3.2	32
21	Epitaxial growth of Cu on Cu(001): Experiments and simulations. Physical Review B, 2000, 62, R10649-R10652.	1.1	31
22	Uniaxial Strain Redistribution in Corrugated Graphene: Clamping, Sliding, Friction, and 2D Band Splitting. Nano Letters, 2015, 15, 5969-5975.	4.5	31
23	Intensity-Dependent Exciton Dynamics of (6,5) Single-Walled Carbon Nanotubes: Momentum Selection Rules, Diffusion, and Nonlinear Interactions. ACS Nano, 2011, 5, 9898-9906.	7.3	29
24	A case study for optics: The solid immersion microscope. American Journal of Physics, 2008, 76, 758-768.	0.3	26
25	Graphene on nanoscale gratings for the generation of terahertz Smith-Purcell radiation. Applied Physics Letters, 2014, 105, .	1.5	24
26	2D Raman band splitting in graphene: Charge screening and lifting of the K-point Kohn anomaly. Scientific Reports, 2017, 7, 13539.	1.6	22
27	Capabilities and limitations of pupil-plane filters for superresolution and image enhancement. Optics Express, 2004, 12, 4150.	1.7	21
28	Quantum Interference between the Third and Fourth Exciton States in Semiconducting Carbon Nanotubes Using Resonance Raman Spectroscopy. Physical Review Letters, 2012, 108, 117404.	2.9	20
29	Flux-dependent scaling behavior in Cu(100) submonolayer homoepitaxy. Surface Science, 1997, 391, L1205-L1211.	0.8	19
30	Raman-Active Modes of Even-Numbered Cycloparaphenylenes: Comparisons between Experiments and Density Functional Theory (DFT) Calculations with Group Theory Arguments. Journal of Physical Chemistry C, 2015, 119, 2879-2887.	1.5	19
31	Graphene Terahertz Plasmons: A Combined Transmission Spectroscopy and Raman Microscopy Study. ACS Photonics, 2017, 4, 2011-2017.	3.2	15
32	Spectral Self-Interference Fluorescence Microscopy for Subcellular Imaging. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14, 217-225.	1.9	13
33	Enhanced Dielectric Screening and Photoluminescence from Nanopillar-Strained MoS ₂ Nanosheets: Implications for Strain Funneling in Optoelectronic Applications. ACS Applied Nano Materials, 2021, 4, 8101-8107.	2.4	12
34	Tunable Resonant Raman Scattering From Singly Resonant Single Wall Carbon Nanotubes. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12, 1083-1090.	1.9	11
35	Scaling of exciton binding energy with external dielectric function in carbon nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2375-2379.	1.3	11
36	Modeling and Thermal Metrology of Thermally Isolated MEMS Electrothermal Actuators for Strain Engineering of 2D Materials in Air. Journal of Microelectromechanical Systems, 2019, 28, 550-557.	1.7	10

Anna K Swan

#	Article	IF	CITATIONS
37	Charge Tuning of Nonresonant Magnetoexciton Phonon Interactions in Graphene. Physical Review Letters, 2014, 112, 056803.	2.9	9
38	Spectral self-interference microscopy for low-signal nanoscale axial imaging. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2007, 24, 3587.	0.8	7
39	4Pi spectral self-interference microscopy. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2007, 24, 3762.	0.8	7
40	Spectroscopic Properties Unique to Nano-Emitters. Nano Letters, 2008, 8, 4330-4334.	4.5	6
41	Closed-form representations of field components of fluorescent emitters in layered media. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2009, 26, 1458.	0.8	4
42	Revealing new electronic behaviours in the Raman spectra of chiralityâ€enriched carbon nanotube ensembles. Physica Status Solidi (B): Basic Research, 2010, 247, 2768-2773.	0.7	4
43	Identifying the charge density and dielectric environment of graphene using Raman spectroscopy and deep learning. Analyst, The, 2022, 147, 1824-1832.	1.7	4
44	<title>High-resolution IC inspection technique</title> ., 2001,,.		3
45	High-resolution spectral self-interference fluorescence microscopy. , 2002, 4621, 77.		2
46	One-dimensional carbon nanostructures for terahertz electron-beam radiation. Physical Review B, 2016, 93, .	1.1	2
47	4Pi Spectral Self-interference Fluorescence Microscopy. , 2006, , .		2
48	Broadband micro-transient absorption spectroscopy enabled by improved lock-in amplification. Review of Scientific Instruments, 2021, 92, 104706.	0.6	2
49	Nanometer Scale Axial Localization of Fluorescent Emitters for Cellular Imaging. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2007, , .	0.0	1
50	Reconstruction of objects with a limited number of non-zero components in fluorescence microscopy. , 2004, 5324, 27.		0
51	Biological applications of spectral self-interference. , 2004, , .		0
52	Using out-of-focus light to improve image acquisition time in confocal microscopy. , 2005, , .		0
53	Hyperspectral Fourier Transform Spectrometer for Spectral Self-Interference Measurements of Biological Material on Surfaces. , 2006, , .		0
54	Hyperspectral Fourier transform spectrometer for spectral self-interference measurements of biological material on surfaces. , 2007, , .		0

#	Article	IF	CITATIONS
55	Probing bacterial surfaces using 4Pi spectral self-interference fluorescence microscopy. , 2008, , .		Ο
56	Tunable Terahertz Light Emission from Current-Driven Graphene Plasmonic Oscillators. , 2020, , .		0