
Maria WÅ,odarczyk-MakuÅ,a

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4300498/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Effectiveness in the Removal of PAHs from Aqueous Solutions in Physical and Chemical Processes: A Review. Polycyclic Aromatic Compounds, 2017, 37, 292-313.	1.4	45
2	THE LOADS OF PAHS IN WASTEWATER AND SEWAGE SLUDGE OF MUNICIPAL TREATMENT PLANT. Polycyclic Aromatic Compounds, 2005, 25, 183-194.	1.4	40
3	Effectiveness in the Removal of Polycyclic Aromatic Hydrocarbons From Industrial Wastewater by Ultrafiltration Technique. Archives of Environmental Protection, 2012, 38, 49-58.	1.1	36
4	Comparison of effectiveness of coagulation with aluminum sulfate and pre-hydrolyzed aluminum coagulants. Desalination and Water Treatment, 2014, 52, 3843-3851.	1.0	33
5	The Use of Reverse Osmosis in the Removal of PAHs from Municipal Landfill Leachate. Polycyclic Aromatic Compounds, 2016, 36, 20-39.	1.4	33
6	Occurrence of heavy metals and PAHs in soil and plants after application of sewage sludge to soil. Desalination and Water Treatment, 2014, 52, 4014-4026.	1.0	25
7	Application of UV-rays in removal of polycyclic aromatic hydrocarbons from treated wastewater. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2011, 46, 248-257.	0.9	24
8	Monitoring of Polycyclic Aromatic Hydrocarbons in Water during Preparation Processes. Polycyclic Aromatic Compounds, 2013, 33, 430-450.	1.4	20
9	Mineral Materials Coated with and Consisting of MnOx—Characteristics and Application of Filter Media for Groundwater Treatment: A Review. Materials, 2020, 13, 2232.	1.3	19
10	Effectiveness in the Removal of Organic Compounds from Municipal Landfill Leachate in Integrated Membrane Systems: Coagulation – NF/RO. Polycyclic Aromatic Compounds, 2017, 37, 456-474.	1.4	18
11	Influence of Integrated Membrane Treatment on the Phytotoxicity of Wastewater from the Coke Industry. Water, Air, and Soil Pollution, 2018, 229, 154.	1.1	17
12	Inanimate Surfaces as a Source of Hospital Infections Caused by Fungi, Bacteria and Viruses with Particular Emphasis on SARS-CoV-2. International Journal of Environmental Research and Public Health, 2022, 19, 8121.	1.2	17
13	The ability to remove the priority PAHs from water during coagulation process including risk assessment. Desalination and Water Treatment, 2016, 57, 1297-1309.	1.0	15
14	Comparison of the retention of selected PAHs from municipal landfill leachate by RO and UF processes. Desalination and Water Treatment, 2014, 52, 3889-3897.	1.0	14
15	Removal of PAHs from coking wastewater during photodegradation process. Desalination and Water Treatment, 2016, 57, 1262-1272.	1.0	14
16	Persistence of two-, three- and four-ring of PAHs in sewage sludge deposited in different light conditions. Desalination and Water Treatment, 2016, 57, 1184-1199.	1.0	14
17	Adsorption of Polycyclic Aromatic Hydrocarbons (PAHS) from Aqueous Solutions on Different Sorbents. Civil and Environmental Engineering Reports, 2014, 13, 87-96.	0.2	12
18	Safety analysis of the wastewater treatment process in the field of organic pollutants including		11

PAHs. , 0, 72, 146-155.

Maria WÅ, odarczyk-MakuÅ, a

#	Article	IF	CITATIONS
19	Comparison of post-process coke wastewater treatment effectiveness in integrated and hybrid systems that combine coagulation, ultrafiltration, and reverse osmosis. Desalination and Water Treatment, 2014, 52, 3879-3888.	1.0	10
20	The effect of selected acidic or alkaline chemical agents amendment on leachability of selected heavy metals from sewage sludge. Science of the Total Environment, 2018, 633, 463-469.	3.9	10
21	PAHs removal from municipal landfill leachate using an integrated membrane system in aspect of legal regulations. , 0, 69, 335-343.		10
22	Impact of selected insecticides on the anaerobic stabilization of municipal sewage sludge. Desalination and Water Treatment, 2016, 57, 1213-1222.	1.0	9
23	Accumulation of PAHs in plants from vertical flow-constructed wetland. Desalination and Water Treatment, 2016, 57, 1273-1285.	1.0	9
24	Biosorption of LMW PAHs on activated sludge aerobic granules under varying BOD loading rate conditions. Journal of Hazardous Materials, 2021, 418, 126332.	6.5	9
25	Evaluation of the adsorption efficiency of carcinogenic PAHs on microplastic (polyester) fibers—preliminary results. Applied Water Science, 2022, 12, .	2.8	9
26	PAHs balance in solid and liquid phase of sewage sludge during fermentation process. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2008, 43, 1602-1609.	0.9	8
27	Half-Life of Carcinogenic Polycyclic Aromatic Hydrocarbons in Stored Sewage Sludge. Archives of Environmental Protection, 2012, 38, .	1.1	8
28	Desorption of PAHs from solid phase into liquid phase during co-fermentation of municipal and coke sewage sludge. Desalination and Water Treatment, 2014, 52, 3859-3870.	1.0	8
29	Effectiveness of priority PAH removal in a water coagulation process. Water Science and Technology: Water Supply, 2015, 15, 683-692.	1.0	8
30	Effect of catalytic oxidation for removal of PAHs from aqueous solution. Desalination and Water Treatment, 2016, 57, 1286-1296.	1.0	8
31	Degradation of PCBs in sewage sludge during methane fermentation process concerning environmental management. Desalination and Water Treatment, 2016, 57, 1163-1175.	1.0	8
32	Comparison of the PAHs degradation effectiveness using CaO2 or H2O2 under the photo-Fenton reaction. , 0, 134, 57-64.		7
33	The Use of Sodium Percarbonate in the Fenton Reaction for the PAHs Oxidation. Civil and Environmental Engineering Reports, 2018, 28, 124-139.	0.2	6
34	Hazard from sediments contaminated with persistent organic pollutants (POPs). , 0, 117, 318-328.		6
35	Modeling performance of commercial membranes in the low-pressure filtration coking wastewater treatment based on mathematical filtration models. Desalination and Water Treatment, 2014, 52, 3743-3752.	1.0	5

Phytoremediation of PAH-Contaminated Areas. , 2015, , 295-308.

Maria WÅ, odarczyk-MakuÅ, a

#	Article	IF	CITATIONS
37	Effectiveness of degradation and removal of non-steroidal pharmaceuticals which are the most frequently identified in surface water. , 0, 134, 211-223.		5
38	A new synthetic polymers used in removal of pollutants from industrial effluents. Desalination and Water Treatment, 2016, 57, 1038-1049.	1.0	4
39	The application of biosurfactants into removal of selected micropollutants from soils and sediments. Desalination and Water Treatment, 2016, 57, 1255-1261.	1.0	4
40	Catalytic Oxidation of Pahs in Wastewater / Katalityczne Utlenianie Wwa w Åšciekach. Civil and Environmental Engineering Reports, 2016, 20, 179-191.	0.2	3
41	Photo-oxidation of PAHs with calcium peroxide as a source of the hydroxyl radicals. E3S Web of Conferences, 2018, 30, 02009.	0.2	3
42	Impact of Aerobic Stabilization of Sewage Sludge on PAHs Concentration in Reject Waters. Journal of Ecological Engineering, 2021, 22, 27-35.	0.5	3
43	The Coagulant Type Influence on Removal Efficiency of 5- and 6-Ring Pahs During Water Coagulation Process. Civil and Environmental Engineering Reports, 2014, 13, 63-73.	0.2	3
44	Biotic and Abiotic Decomposition of Indeno-Pyrene and Benzo(GHI)Perylene in Sewage Sludge Under Various Light Conditions. Civil and Environmental Engineering Reports, 2018, 28, 116-128.	0.2	3
45	Estimation of potential health and environmental risk associated with the presence of micropollutants in water intakes located in rural areas. , 0, 199, 339-351.		3
46	Behaviour of PAHs during sewage sludge fermentation in the presence of sulphate and nitrate. Desalination and Water Treatment, 2011, 33, 178-184.	1.0	2
47	Biochemical Neutralization of Coke Excess Sewage Sludge During Anaerobic Digestion Process. Chemical and Biochemical Engineering Quarterly, 2018, 32, 239-246.	0.5	2
48	Removal of PAHs from Municipal Wastewater during the Third Stage of Treatment. Engineering and Protection of Environment, 2018, 21, 143-154.	0.3	2
49	Halogenated Organic Compounds in Water and in Wastewater. Civil and Environmental Engineering Reports, 2019, 29, 236-247.	0.2	2
50	Application of sodium carbonate-hydrogen peroxide for PAHs degradation in real wastewater and evaluation of their toxicity TEQ value. , 0, 199, 362-370.		2
51	Stability of Selected PAHs in Sewage Sludge/ Stabilność Wybranych Wwa W Osadach Ściekowych. Civil and Environmental Engineering Reports, 2014, 14, 95-105.	0.2	2
52	Simplification of the Procedure of Preparing Samples for PAHs and PCBs Determination / Uproszczenie Procedury Przygotowania Próbek Do Oznaczania Wwa I Pcb. Archives of Environmental Protection, 2012, 38, .	1.1	1
53	Chromium as an inhibitor of PAHs degradation in deposed sewage sludge. Desalination and Water Treatment, 2014, 52, 3672-3679.	1.0	1
54	Sediments Contamination with Organic Micropollutants: Current State and Perspectives. Civil and Environmental Engineering Reports, 2016, 21, 89-107.	0.2	1

Maria WÅ,odarczyk-MakuÅ,a

#	Article	IF	CITATIONS
55	Influence of Selected Organic Micropollutants on Organisms. Civil and Environmental Engineering Reports, 2017, 24, 83-97.	0.2	1
56	Editorial: Transformation of Persistent Organic Pollutions in the Environment. Current Organic Chemistry, 2018, 22, 937-938.	0.9	1
57	The Use of Sodium Carbonate—Hydrogen Peroxide (2/3) in the Modified Fenton Reaction to Degradation PAHs in Coke Wastewater. Proceedings (mdpi), 2019, 16, 44.	0.2	1
58	Simultaneous oxidation and adsorption of PAHs in effluents from industrial treatment plant. , 0, 117, 329-339.		1
59	Control of PAHs degradation process under reducing conditions. , 0, 117, 290-300.		1
60	Decrease in the chloride disinfection by-products (DBPs) formation potential in water as a result of coagulation process. , 0, 167, 96-104.		1
61	Treatment and Utilization of the Concentrate from Membrane Separation Processes of Landfill Leachates. Civil and Environmental Engineering Reports, 2020, 30, 92-104.	0.2	1
62	The effect of biochar on migration of selected heavy metals to soil, waters and plant biomass and physical and chemical properties of soil. , 0, 199, 144-151.		1
63	Applicability of the Lr form of the Kedem–Katchalsky–Peusner equations for membrane transport in water purification technology. , 0, 202, 48-60.		1
64	Management of Energy Conversion Processes in Membrane Systems. Energies, 2022, 15, 1661.	1.6	1
65	Selected heavy metals speciation in chemically stabilised sewage sludge. E3S Web of Conferences, 2017, 22, 00184.	0.2	Ο
66	The reduction of 2- and 3-ring PAHs entering to the surface waters in the integrated processes. E3S Web of Conferences, 2018, 59, 00012.	0.2	0
67	Influence of Chromium Ions on Effectiveness Degradation of Low-molecule PAHs in Sewage Sludges. Engineering and Protection of Environment, 2016, 19, 455-467.	0.3	0
68	State of the Art in Technologies of the Biogas Production Increasing During Methane Digestion of Sewage Sludge. Civil and Environmental Engineering Reports, 2018, 28, 64-76.	0.2	0
69	Transformation of Persistent Organic Pollutions in the Environment - Part II. Current Organic Chemistry, 2018, 22, 1039-1040.	0.9	0
70	Special issue on the 14th Conference on Micropollutants in Human Environment, 4–6 September 2019, Czestochowa, Poland - Editorial. , 0, 186, viii-viii.		0
71	Evaluation of the possibility of PAH degradation by a consortium of fermentation bacteria. , 0, 186, 325-333.		0
72	Characteristics of Petroleum Compounds and their Removal from the Aquatic Environment. Civil and Environmental Engineering Reports, 2020, 30, 74-86.	0.2	0