
Oshrat Levy-Ontman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4300228/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recyclable Pdâ€based polysaccharide catalyst for aerobic oxidation of benzyl alcohol. Journal of Applied Polymer Science, 2022, 139, 51517.	1.3	4
2	Green Procedure for Aerobic Oxidation of Benzylic Alcohols with Palladium Supported on lota-Carrageenan in Ethanol. Polymers, 2021, 13, 498.	2.0	7
3	Pd-Based Polysaccharide Hydrogels as Heterogeneous Catalysts for Oxidation of Aromatic Alcohols. Organics, 2021, 2, 50-56.	0.6	2
4	The Effect of Alcohol on Palladium Nanoparticles in i-Pd(OAc)2(TPPTS)2 for Aerobic Oxidation of Benzyl Alcohol. Metals, 2021, 11, 1443.	1.0	3
5	Palladium Based-Polysaccharide Hydrogels as Catalysts in the Suzuki Cross-Coupling Reaction. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 622-636.	1.9	12
6	Development and application of palladium nanoparticles on renewable polysaccharides as catalysts for the Suzuki cross-coupling of halobenzenes and phenylboronic acids. Molecular Catalysis, 2020, 493, 111048.	1.0	21
7	Novel iota carrageenan-based RhCl3 as an efficient and recyclable catalyst in Suzuki cross coupling. Molecular Catalysis, 2020, 486, 110841.	1.0	5
8	Recent Developments in the Immobilization of Palladium Complexes on Renewable Polysaccharides for Suzuki–Miyaura Cross-Coupling of Halobenzenes and Phenylboronic Acids. Catalysts, 2020, 10, 136.	1.6	18
9	Acceleration of transfer-hydrogenation of cyclohexene with palladium catalysts in the presence of polysaccharides. Organic Communications, 2020, 13, 138-145.	0.8	1
10	RhCl(TPPTS) 3 supported on iotaâ€carrageenan as recyclable catalysts for Suzuki crossâ€coupling. Journal of Applied Polymer Science, 2019, 136, 48200.	1.3	3
11	Antiviral bioactivity of renewable polysaccharides against <i>Varicella Zoster</i> . Cell Cycle, 2019, 18, 3540-3549.	1.3	16
12	http://www.acgpubs.org/issue/organic-communications/12/3-july-september. Organic Communications, 2019, 12, 149-159.	0.8	4
13	Red alga polysaccharides attenuate angiotensin II-induced inflammation in coronary endothelial cells. Biochemical and Biophysical Research Communications, 2018, 500, 944-951.	1.0	8
14	Study of Pd-based catalysts within red algae-derived polysaccharide supports in a Suzuki cross-coupling reaction. RSC Advances, 2018, 8, 37939-37948.	1.7	17
15	Renewable Polysaccharides as Supports for Palladium Phosphine Catalysts. Polymers, 2018, 10, 659.	2.0	24
16	An anti-inflammatory effect of red microalga polysaccharides in coronary artery endothelial cells. Atherosclerosis, 2017, 264, 11-18.	0.4	44
17	Insight into glucosidase II from the red marine microalga <i>Porphyridium</i> sp. (Rhodophyta). Journal of Phycology, 2015, 51, 1075-1087.	1.0	7
18	Salt Effect on the Antioxidant Activity of Red Microalgal Sulfated Polysaccharides in Soy-Bean Formula. Marine Drugs, 2015, 13, 6425-6439.	2.2	12

#	Article	IF	CITATIONS
19	Genes Involved in the Endoplasmic Reticulum N-Glycosylation Pathway of the Red Microalga Porphyridium sp.: A Bioinformatic Study. International Journal of Molecular Sciences, 2014, 15, 2305-2326.	1.8	30
20	Unique N-Glycan Moieties of the 66-kDa Cell Wall Glycoprotein from the Red Microalga Porphyridium sp Journal of Biological Chemistry, 2011, 286, 21340-21352.	1.6	51
21	Red microalgal cell-wall polysaccharides: biotechnological aspects. Current Opinion in Biotechnology, 2010, 21, 358-364.	3.3	210
22	Isolation and characterization of poly- and oligosaccharides from the red microalga Porphyridium sp Carbohydrate Research, 2009, 344, 343-349.	1.1	68