Yasumasa Hikosaka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/430022/publications.pdf

Version: 2024-02-01

170 papers

2,737 citations

218677 26 h-index 265206 42 g-index

170 all docs

170 docs citations

170 times ranked

1353 citing authors

#	Article	IF	CITATIONS
1	Multi-electron–ion coincidence spectrometer with a high-efficiency microchannel plate detector. Journal of Electron Spectroscopy and Related Phenomena, 2022, 255, 147158.	1.7	5
2	Double-pulsed wave packets in spontaneous radiation from a tandem undulator. Scientific Reports, 2022, 12, .	3.3	7
3	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mn>3</mml:mn><mml:mi>d</mml:mi><mml:msup><mml:mrow><mml:mi>Kr</mml:mi><td>0.5</td><td></td></mml:mrow></mml:msup></mml:mrow>	0.5	
4	xmlns:mml="http://www.w3.org/1998/Math/Math/ML"> xmmlmsup> xmmlmrow> xmmlmi> Rbx/mmlmi> x/mmlm Electron Wave Packet Interference in Atomic Inner-Shell Excitation. Physical Review Letters, 2021, 126, 113202.	7.8	ml:mrow> <m 16</m
5	Super-Coster-Kronig decay of Kr <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>3</mml:mn><mml:mi>p</mml:mi><td>> ଥାଛାଲା:m</td><td>ırœv></td></mml:mrow></mml:math>	> ଥା ଛାଲା:m	ırœv>
6	Reply to â€~Comment on "Coherent control in the extreme ultraviolet and attosecond regime by synchrotron radiationâ€â€™. Nature Communications, 2021, 12, 3782.	12.8	6
7	Time-resolved shot-by-shot photoelectron spectroscopy of autoionizing <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow><mml:mi>Xe</mml:mi><td>กrอิมฮิ > < mi</td><td>mlono>+</td></mml:mrow></mml:msup></mml:math>	ก rอิ มฮิ > < mi	ml o no>+
8	Auger cascade initiated by the Coster–Kronig transition from the Kr 3p core-hole states. Journal of Physics B: Atomic, Molecular and Optical Physics, 2021, 54, 185002.	1.5	3
9	Specific chemical bond relaxation unravelled by analysis of shake-up satellites in the oxygen single site double core hole spectrum of CO2. Physical Chemistry Chemical Physics, 2021, , .	2.8	2
10	Cascade and direct processes in multiple Auger decay of core-excited states of N2. Journal of Physics: Conference Series, 2020, 1412, 142004.	0.4	0
11	Development of pulse selectors for the synchrotron radiation pulses from the Photon Factory 2.5 GeV ring to study multiple photoionization. Journal of Physics: Conference Series, 2020, 1412, 152092.	0.4	3
12	Advanced Computation Method for Double Core Hole Spectra: Insight into the Nature of Intense Shake-up Satellites. Journal of Physical Chemistry Letters, 2020, 11, 4359-4366.	4.6	11
13	Multielectron-lon Coincidence Spectroscopy of Xe in Extreme Ultraviolet Laser Fields: Nonlinear Multiple Ionization via Double Core-Hole States. Physical Review Letters, 2020, 124, 193201.	7.8	7
14	Site-specificity reduction during Auger decay following Si:2p photoionization in Cl3SiSi(CH3)3 vapor: An interatomic-Coulombic-decay-like process. Chemical Physics, 2020, 534, 110756.	1.9	0
15	Zeeman quantum beats of helium Rydberg states excited by synchrotron radiation. Journal of Synchrotron Radiation, 2020, 27, 675-680.	2.4	3
16	Core-hole spectator Auger decay. Physical Review A, 2020, 101, .	2.5	2
17	Multiple Auger decays of core-excited states in N2. Journal of Chemical Physics, 2020, 152, 124301.	3.0	3
18	Polarization control in a crossed undulator without a monochromator. New Journal of Physics, 2020, 22, 083062.	2.9	8

#	Article	IF	Citations
19	Characterization of soft X-ray FEL pulse duration with two-color photoelectron spectroscopy. Journal of Synchrotron Radiation, 2020, 27, 1362-1365.	2.4	11
20	Single photon simultaneous K-shell ionization/excitation in C ₆ H ₆ : experiment and theory. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 244010.	1.5	5
21	A virtual stretch of light pulse interval by pulsed electron extraction introduced into a magnetic bottle electron spectrometer. Review of Scientific Instruments, 2019, 90, 053105.	1.3	3
22	Coherent control in the extreme ultraviolet and attosecond regime by synchrotron radiation. Nature Communications, 2019, 10, 4988.	12.8	43
23	Metastability of carbonyl sulfide dications studied by multi-electronâ [*] ion coincidence spectroscopy. International Journal of Mass Spectrometry, 2019, 439, 13-18.	1.5	8
24	Double-core ionization photoelectron spectroscopy of C6H6: Breakdown of the "intuitive― ortho-meta-para binding energy ordering of Kâ~1Kâ~1 states. Journal of Chemical Physics, 2019, 151, 214303.	3.0	11
25	Controlling the Orbital Alignment in Atoms Using Cross-Circularly Polarized Extreme Ultraviolet Wave Packets. Physical Review Letters, 2019, 123, 233401.	7.8	14
26	Single and multiple Auger decay processes from the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="normal">N</mml:mi><mml:msup><mml:mrow><mml:mi mathvariant="normal">e</mml:mi></mml:mrow><mml:mo>+</mml:mo></mml:msup></mml:mrow><mml:mrow><mml:mo></mml:mo></mml:mrow><mml:mrow><mml:mo></mml:mo></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow< td=""><td>2.5 <mml:mn< td=""><td>4 >1</td></mml:mn<></td></mml:mrow<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	2.5 <mml:mn< td=""><td>4 >1</td></mml:mn<>	4 >1
27	Selectivity of the Br <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>3</mml:mn><mml:msup><mml:mi .<="" 2018,="" 98,="" a,="" auger="" decays="" hbr.="" in="" physical="" review="" td=""><td>>2ds/mml:1</td><td>mai>∢mmlim</td></mml:mi></mml:msup></mml:mrow></mml:math>	>2ds/mml:1	mai>∢mmlim
28	Limitations in photoionization of helium by an extreme ultraviolet optical vortex. Physical Review A, 2017, 95, .	2.5	21
29	Multi-electron coincidence spectroscopy: Triple Auger decay of Ar 2p and 2s holes. Journal of Electron Spectroscopy and Related Phenomena, 2017, 220, 125-132.	1.7	13
30	Detection of Neutral Species in the MALDI Plume Using Femtosecond Laser Ionization: Quantitative Analysis of MALDI-MS Signals Based on a Semiequilibrium Proton Transfer Model. Journal of Physical Chemistry A, 2017, 121, 31-39.	2.5	8
31	Single, double, and triple Auger decays from 1s shake-up states of the oxygen molecule. Journal of Chemical Physics, 2017, 147, 104304.	3.0	8
32	Observation of an optical vortex beam from a helical undulator in the XUV region. Journal of Synchrotron Radiation, 2017, 24, 934-938.	2.4	19
33	Site-Specific Electron-Relaxation Caused by Si:2p Core-Level Photoionization: Comparison between F3SiCH2CH2Si(CH3)3 and Cl3SiCH2CH2Si(CH3)3 Vapors by Means of Photoelectron Auger Electron Coincidence Spectroscopy. Journal of Physical Chemistry A, 2016, 120, 9907-9915.	2.5	2
34	Multi-electron coincidence spectroscopy: double photoionization from molecular inner-shell orbitals. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49, 182002.	1.5	19
35	Stability and dissociation dynamics of N2++ ions following core ionization studied by an Auger-electron–photoion coincidence method. Journal of Chemical Physics, 2016, 145, 034305.	3.0	14
	Photon-energy dependence of single-photon simultaneous core ionization and core excitation		

Photon-energy dependence of single-photon simultaneous core ionization and core excitation in < mml:math

6 xmlns:mml="http://www.w3.org/1998/Math/MathML"> < mml:msub> < mml:mi>CO < / mml:mi> < mml:mn>2 < / mml:mn>2 \ / mml:msub> < / mml Physical Review A, 2016, 94, .

36

#	Article	IF	CITATIONS
37	Photoelectron recapture and reemission process associated with double Auger decay in Ar. Physical Review A, 2016, 93, .	2.5	4
38	Electron emission relevant to inner-shell photoionization of condensed water studied by multi-electron coincidence spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2016, 213, 17-21.	1.7	1
39	Femtosecond two-photon Rabi oscillations in excited He driven by ultrashort intense laser fields. Nature Photonics, 2016, 10, 102-105.	31.4	50
40	Multiple Auger decay of the neon <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>1</mml:mn><mml:mi>s<td>i> dıaml:m</td><td>nro2x3> </td></mml:mi></mml:mrow></mml:math>	i> dıa ml:m	nro 2x3>
41	Single photon core ionization with core excitation: a new spectroscopic tool. Journal of Physics: Conference Series, 2015, 635, 112093.	0.4	1
42	Ultrafast two-photon Rabi oscillations in excited He driven by femtosecond intense laser fields. Journal of Physics: Conference Series, 2015, 635, 092082.	0.4	0
43	Site-specific formation of metastable OCS2+studied by Auger-electron-ion coincidence method. Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48, 125101.	1.5	3
44	Double core hole spectroscopy with synchrotron radiation. Journal of Electron Spectroscopy and Related Phenomena, 2015, 204, 303-312.	1.7	24
45	Single photon simultaneous K-shell ionization and K-shell excitation. II. Specificities of hollow nitrogen molecular ions. Journal of Chemical Physics, 2015, 142, 014308.	3.0	26
46	Single photon simultaneous K-shell ionization and K-shell excitation. I. Theoretical model applied to the interpretation of experimental results on H2O. Journal of Chemical Physics, 2015, 142, 014307.	3.0	37
47	Determination of Absolute Cross-Sections of Nonresonant EUV-UV Two-Color Two-Photon Ionization of He. Springer Proceedings in Physics, 2015, , 109-112.	0.2	0
48	Five-photon sequential double ionization of He in intense extreme-ultraviolet free-electron laser fields. Physical Review A, 2014, 90, .	2.5	7
49	Resonant multiple Auger decay after the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>2</mml:mn><mml:msubsup><mi xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>s</mml:mi>excitation in Ar studied with a multielectron coincidence method. Physical Review A. 2014. 89</mi </mml:msubsup></mml:mrow></mml:math 	ml:mi>p </td <td>mml:mi><nir< td=""></nir<></td>	mml:mi> <nir< td=""></nir<>
50	Dynamics of oxygen Rydberg atom generation following O 1sinner-shell excitation of H2O. Journal of Chemical Physics, 2014, 140, 214310.	3.0	5
51	Molecular single photon double K-shell ionization. Journal of Electron Spectroscopy and Related Phenomena, 2014, 196, 38-42.	1.7	14
52	A high-resolution magnetic bottle electron spectrometer and its application to a photoelectron–Auger electron coincidence measurement of the L2,3VV Auger decay in CS2. Journal of Electron Spectroscopy and Related Phenomena, 2014, 192, 69-74.	1.7	13
53	Site-specific formation of metastable dications following inner-shell ionization of CO2. Chemical Physics Letters, 2014, 603, 46-50.	2.6	6
54	Decay of a 2p inner-shell hole in an Ar ⁺ ion. Journal of Physics: Conference Series, 2014, 488, 022012.	0.4	0

#	Article	IF	CITATIONS
55	Double K-shell ionization in C2H2n(n=l,3), CO and N2. Journal of Physics: Conference Series, 2014, 488, 022013.	0.4	O
56	Multi-electron coincidence spectroscopy: double photoionization from molecular inner-shell orbitals. Journal of Physics: Conference Series, 2014, 488, 012012.	0.4	2
57	Determination of Absolute Cross-Sections of Nonresonant EUV-UV Two-Color Two-Photon Ionization of He. , 2014, , .		1
58	Shot-by-Shot Photoelectron Spectroscopy of Rare Gas Atoms in Ultrashort Intense EUV Free-Electron Laser Fields. Springer Series in Chemical Physics, 2013, , 151-163.	0.2	0
59	display="inline"> <mml:msup><mml:mi>K</mml:mi><mml:mrow><mml:mo mathvariant="bold">â^'</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:msup> and <mml:matl display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi>K</mml:mi><mml:mrow><mml:mo< td=""><td>h_{7.8}</td><td>62</td></mml:mo<></mml:mrow></mml:msup></mml:matl>	h _{7.8}	62
60	mathvariant="bold"> a" < /mmkmo> < mmkmo> < /mmkmro> < /mro> A local chemical environment effect in site-specific Auger spectra of ethyl trifluoroacetate. Journal of Chemical Physics, 2013, 138, 024306.	nml:mi> <r 3.0</r 	nml:mrow> 16
61	Electron reemission processes following photoelectron recapture due to post-collision interaction in inner-shell photoionization of water molecules. Journal of Chemical Physics, 2013, 138, 214308.	3.0	5
62	display="inline"> <mml:msup><mml:mi>Ar</mml:mi><mml:mo>+</mml:mo></mml:msup> Ion.	7.8	18
63	Physical Review Letters, 2013, 110, 113002. Near-Edge X-Ray Absorption Fine Structures Revealed in Core Ionization Photoelectron Spectroscopy. Physical Review Letters, 2013, 111, 123001.	7.8	44
64	Nonresonant EUV-UV two-color two-photon ionization of He studied by single-shot photoelectron spectroscopy. Physical Review A, $2013,88$, .	2.5	12
65	Resonances in three-photon double ionization of Ar in intense extreme-ultraviolet free-electron laser fields studied by shot-by-shot photoelectron spectroscopy. Physical Review A, 2013, 88, .	2.5	4
66	Compact XFEL and AMO sciences: SACLA and SCSS. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013, 46, 164001.	1.5	88
67	Ultrafast Nonlinear Double Excitations of He in Intense EUV FEL Fields. EPJ Web of Conferences, 2013, 41, 02009.	0.3	O
68	Communication: Formation of slow electrons in the Auger decay of core-ionized water molecules. Journal of Chemical Physics, 2012, 137, 191101.	3.0	5
69	Auger decay of molecular double core-hole and its satellite states: Comparison of experiment and calculation. Journal of Chemical Physics, 2012, 137, 224306.	3.0	21
70	Angle-resolved metastable fragment yields spectra of N2 and CO in K-edge excitation energy region. Journal of Chemical Physics, 2012, 136, 054201.	3.0	4
71	Unveiling residual molecular binding in triply charged Hydrogen Bromide. Journal of Physics: Conference Series, 2012, 388, 022079.	0.4	O
72	Single-Photon Core Double Ionization in Molecules. Journal of Physics: Conference Series, 2012, 388, 022027.	0.4	0

#	Article	IF	Citations
73	Site-specific Auger electron spectra of ethyl trifluoroacelate molecules studied by magnetic bottle electron spectrometer. Journal of Physics: Conference Series, 2012, 388, 022081.	0.4	O
74	Interference of electron pairs in photoinduced N _{4,5} â^' O ₁ O _{2,3} Auger decay in xenon. Journal of Physics: Conference Series, 2012, 388, 022094.	0.4	0
75	Auger decay of Ar 2 <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>p</mml:mi></mml:math> satellite states studied with a multielectron coincidence method. Physical Review A, 2012, 85, .	2.5	18
76	Post collision interaction probed by multi-electron coincidences: Application to the Ar 2s inner-shell photoionization. Journal of Electron Spectroscopy and Related Phenomena, 2012, 185, 198-203.	1.7	9
77	Multi-electron spectroscopy: Auger decays of the argon 2s hole. Physical Chemistry Chemical Physics, 2011, 13, 18355.	2.8	23
78	Decay pathways after Xe 3d inner shell ionization using a multi-electron coincidence technique. Journal of Physics B: Atomic, Molecular and Optical Physics, 2011, 44, 075003.	1.5	13
79	Enhanced Nonlinear Double Excitation of He in Intense Extreme Ultraviolet Laser Fields. Physical Review Letters, 2011, 107, 243003.	7.8	40
80	Properties of Hollow Molecules Probed by Single-Photon Double Ionization. Physical Review Letters, 2011, 106, 063003.	7.8	97
81	Evidence of Single-Photon Two-Site Core Double Ionization of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="bold">C</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="bold">H</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> Molecules. Physical	7.8	79
82	Energy Correlation among Three Photoelectrons Emitted in Core-Valence-Valence Triple Photoionization of Ne. Physical Review Letters, 2011, 107, 113005.	7.8	15
83	Unveiling Residual Molecular Binding in Triply Charged Hydrogen Bromide. Physical Review Letters, 2011, 106, 103002.	7.8	19
84	A magnetic-bottle multi-electron-ion coincidence spectrometer. Review of Scientific Instruments, 2011, 82, 103105.	1.3	20
85	Two-electron emissions on atomic photoabsorption studied by multi-electron coincidence spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2010, 181, 121-124.	1.7	2
86	Multiphoton Double Ionization of Ar in Intense Extreme Ultraviolet Laser Fields Studied by Shot-by-Shot Photoelectron Spectroscopy. Physical Review Letters, 2010, 105, 133001.	7.8	53
87	Spectra of the triply charged ion CS23+ and selectivity in molecular Auger effects. Journal of Chemical Physics, 2010, 132, 104311.	3.0	17
88	Dissociation of core-valence doubly excited states in NO followed by atomic Auger decay. Journal of Chemical Physics, 2010, 133, 154315.	3.0	1
89	PCI effects in argon 2p double Auger decay probed by multielectron coincidence methods. Journal of Physics B: Atomic, Molecular and Optical Physics, 2010, 43, 115001.	1.5	26
90	Doppler effect in fragment autoionization following core-to-Rydberg excitations of N ₂ . New Journal of Physics, 2010, 12, 063030.	2.9	10

#	Article	IF	Citations
91	Application of a simple asynchronous mechanical light chopper to multielectron coincidence spectroscopy. Review of Scientific Instruments, 2009, 80, 123101.	1.3	52
92	Energy Correlation of the Three Electrons Emitted during the Triple Photoionization of Ar. Physical Review Letters, 2009, 102, 013002.	7.8	23
93	Probing the mechanism of simultaneous two-electron emission on core-hole decay. Physical Review A, 2009, 80, .	2.5	18
94	Multiple photoionization of atoms and small molecules by synchrotron radiation. European Physical Journal: Special Topics, 2009, 169, 73-78.	2.6	5
95	X-ray-absorption spectroscopy beyond the natural width measured in partial Auger yield mode. Physical Review A, 2009, 79, .	2.5	2
96	PCI effects in double Auger decays of Ar 2p inner shell vacancies. Journal of Physics: Conference Series, 2009, 194, 022034.	0.4	0
97	Stability and Fragmentation of OCS2+ Studied by Using Auger-Electron-Ion Coincidence Measurement. Journal of the Korean Physical Society, 2009, 54, 371-375.	0.7	8
98	X-ray absorption spectroscopy measured in resonant X-ray scattering mode: How unnatural is the resolution beyond the natural width?. Chemical Physics Letters, 2008, 465, 153-156.	2.6	3
99	Threshold photoelectron spectroscopy on inner-valence ionic states of NO. Journal of Chemical Physics, 2008, 128, 044320.	3.0	7
100	Sub-natural linewidth spectroscopy on core–valence doubly ionized states of OCS. Journal of Physics B: Atomic, Molecular and Optical Physics, 2008, 41, 025103.	1.5	5
101	Auger decays of 1s shake-up and shake-off states in N ₂ molecules. Journal of Physics B: Atomic, Molecular and Optical Physics, 2008, 41, 135101.	1.5	21
102	Mechanisms of Spontaneous Two-Electron Emission from Core-Excited States of Molecular CO. Physical Review Letters, 2008, 101, 183003.	7.8	10
103	X-Ray Absorption Measured in the Resonant Auger Scattering Mode. Physical Review Letters, 2008, 101, 073001.	7.8	8
104	Formation of Metastable Fragments around the Cl 2p Ionization Thresholds of HCl. Journal of the Korean Physical Society, 2008, 53, 3798-3801.	0.7	5
105	Multielectron coincidence spectroscopy for core-valence doubly ionized states of CO. Journal of Chemical Physics, 2007, 127, 044305.	3.0	15
106	Development of Auger-Electron-Ion Coincidence Spectrometer to Study Decay Dynamics of Core Ionized Molecules. AIP Conference Proceedings, 2007, , .	0.4	4
107	Appearance of interatomic Coulombic decay in Ar, Kr, and Xe homonuclear dimers. Journal of Chemical Physics, 2007, 127, 154323.	3.0	38
108	Autoionization of the Ne ⁺ Rydberg states formed via valence photoemission. Journal of Physics B: Atomic, Molecular and Optical Physics, 2007, 40, 4047-4060.	1.5	7

#	Article	IF	CITATIONS
109	Core-valence multiply excited states in N2probed by detecting metastable fragments. Journal of Physics B: Atomic, Molecular and Optical Physics, 2007, 40, 2091-2097.	1.5	13
110	Double Photoionization into Double Core-Hole States in Xe. Physical Review Letters, 2007, 98, 183002.	7.8	33
111	State-selective cross sections of multiple photoionization in Ne. Physical Review A, 2007, 76, .	2.5	17
112	Autoionization dynamics of core-valence doubly excited states in N2. Physical Review A, 2007, 75, .	2.5	5
113	Single, double, and triple Auger decay of the Xe <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>4</mml:mn><mml:mi>p</mml:mi></mml:mrow></mml:math> core-hole states. Physical Review A. 2007. 76	2.5	31
114	Photoelectron recapture through post-collision interaction in N2. Journal of Electron Spectroscopy and Related Phenomena, 2007, 156-158, 289-293.	1.7	12
115	lon pair formation in the vacuum ultraviolet region of NO studied by negative ion imaging spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2007, 154, 43-47.	1.7	2
116	Negative ion formation following inner-shell photoexcitation in CO2 studied by velocity imaging spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2007, 156-158, 284-288.	1.7	5
117	Electron-ion coincidence spectrometer for studies on decay dynamics of core-excited molecules. Journal of Electron Spectroscopy and Related Phenomena, 2007, 156-158, 279-283.	1.7	7
118	Multiple direct and sequential Auger effect in the rare gases. AIP Conference Proceedings, 2006, , .	0.4	0
119	Anisotropic fragment emission on valence photoionization of CF4. Journal of Electron Spectroscopy and Related Phenomena, 2006, 152, 29-32.	1.7	15
120	Coster–Kronig decay of the 2s hole state in HCl observed by sub-natural linewidth Auger electron spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2006, 153, 88-91.	1.7	1
121	Electron correlation in Xe 4d Auger decay studied by slow photoelectron–Auger electron coincidence spectroscopy. Journal of Physics B: Atomic, Molecular and Optical Physics, 2006, 39, 1017-1033.	1.5	29
122	Inner-valence states of N2+ and the dissociation dynamics studied by threshold photoelectron spectroscopy and configuration interaction calculation. Journal of Chemical Physics, 2006, 124, 234306.	3.0	53
123	Experimental Investigation of Core-Valence Double Photoionization. Physical Review Letters, 2006, 97, 053003.	7.8	45
124	Properties of Resonant Interatomic Coulombic Decay in Ne Dimers. Physical Review Letters, 2006, 97, 243401.	7.8	80
125	Auger decay of Ne 1s photoionization satellites studied by a multi-electron coincidence method. Journal of Physics B: Atomic, Molecular and Optical Physics, 2006, 39, 3457-3464.	1.5	21
126	MULTIDIMENSIONAL PHOTOELECTRON SPECTROSCOPY., 2006,,.		0

#	Article	IF	CITATIONS
127	Dynamics of double photoionization near the Ar 2p threshold investigated by threshold electron–Auger electron coincidence spectroscopy. Journal of Physics B: Atomic, Molecular and Optical Physics, 2005, 38, L9-L18.	1.5	19
128	Origin of threshold electrons produced in decay of the Xe $4d\hat{a}^1$ np resonance. Journal of Electron Spectroscopy and Related Phenomena, 2005, 142, 319-323.	1.7	1
129	Velocity imaging spectrometer for negative fragment ions: application to dynamics of O2 and N2O ion-pair dissociation. Journal of Electron Spectroscopy and Related Phenomena, 2005, 148, 5-10.	1.7	17
130	Coincidence Auger spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2005, 144-147, 7-11.	1.7	24
131	Efficient production of metastable fragments around the 1s ionization threshold in N2. Journal of Physics B: Atomic, Molecular and Optical Physics, 2005, 38, 3597-3605.	1.5	21
132	Autoionization selectivity of Ne+Rydberg states converging to Ne2+(1Se). Journal of Physics B: Atomic, Molecular and Optical Physics, 2004, 37, 2823-2828.	1.5	1
133	The formation of fluorescent and metastable fragments by photoexcitation of some diatomic molecules in the vacuum ultraviolet region. Journal of Physics B: Atomic, Molecular and Optical Physics, 2004, 37, 283-293.	1.5	10
134	Autoionization and neutral dissociation of superexcited HI studied by two-dimensional photoelectron spectroscopy. Journal of Chemical Physics, 2004, 121, 792-799.	3.0	4
135	Sub-natural linewidth Auger electron spectroscopy of the 2s hole decay in H2S. Journal of Electron Spectroscopy and Related Phenomena, 2004, 137-140, 287-291.	1.7	8
136	Dissociative double photoionisation of CO below the CO++ threshold. Chemical Physics, 2004, 299, 147-154.	1.9	15
137	Dissociative photoionization of H2 at high photon energies: uncovering new series of doubly excited states. Chemical Physics Letters, 2004, 389, 145-149.	2.6	21
138	Photoionization into the dissociation continuum of H2+(X2Σg+) studied by velocity imaging photoionization coincidence spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2003, 133, 77-86.	1.7	8
139	Inner-valence states of O2+ and dissociation dynamics studied by threshold photoelectron spectroscopy and a configuration interaction calculation. Journal of Chemical Physics, 2003, 119, 7693-7700.	3.0	21
140	Fragment emission anisotropy in the dissociative photoionization of O2investigated by two-dimensional photoion spectroscopy. Journal of Physics B: Atomic, Molecular and Optical Physics, 2003, 36, 1423-1432.	1.5	14
141	Competition between autoionization and dissociation in the [O2+(B2ÂgÂ)]nland [O2+(c4ÂuÂ)]nlRydberg states investigated by photon-induced dissociation to neutral fragments. Journal of Physics B: Atomic, Molecular and Optical Physics, 2003, 36, 4311-4326.	1.5	16
142	PCI Effects on Coincidence Spectra Associated with the Emission of Two Auger Electrons. AIP Conference Proceedings, 2003, , .	0.4	0
143	$4\ddot{l}f\hat{a}$ Inner Valence Photoionization Dynamics of NO Derived from Photoelectron-Photoion Angular Correlations. Physical Review Letters, 2002, 88, 193002.	7.8	69
144	Photoemission of threshold electrons in the vicinity of the xenon 4d hole: dynamics of Auger decay. Journal of Physics B: Atomic, Molecular and Optical Physics, 2002, 35, 3265-3295.	1.5	26

#	Article	IF	CITATIONS
145	New results on the dissociative photoionization of CF4 and CCl4. Journal of Mass Spectrometry, 2002, 37, 854-857.	1.6	21
146	Inner valence region of CO+ studied by threshold photoelectron-photoion coincidence spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2002, 125, 99-106.	1.7	8
147	Molecular frame photoelectron angular distributions in photoionization of H2 into the states. Chemical Physics, 2002, 277, 53-59.	1.9	17
148	Time focus with velocity imaging of charged particles in coincidence: application to photoionization of CO and N2O. Chemical Physics, 2002, 281, 91-100.	1.9	12
149	Formation and Autoionization of a Dipole-Forbidden Superexcited State of CS2. Journal of Physical Chemistry A, 2001, 105, 8130-8135.	2.5	1
150	Ion pair dissociation from N2O followed by autodetachment of N(1Dg). Chemical Physics, 2001, 272, 91-98.	1.9	5
151	Molecule frame photoelectron angular distributions from oriented methyl chloride and methyl fluoride molecules. Journal of Chemical Physics, 2001, 115, 4593-4603.	3.0	46
152	Dynamics and Post-Collision Interaction Effects in Two Electron Decay from the Xenon4dHole. Physical Review Letters, 2001, 87, 053001.	7.8	39
153	New results on photoion pair formation from application of the velocity imaging photoionisation coincidence technique. Rapid Communications in Mass Spectrometry, 2000, 14, 2305-2311.	1.5	12
154	Superexcitation and subsequent decay of triatomic molecules studied by two-dimensional photoelectron spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2000, 112, 137-150.	1.7	4
155	Molecular-frame photoelectron angular distributions in inner-valence photoionization of N2. Journal of Physics B: Atomic, Molecular and Optical Physics, 2000, 33, 3137-3147.	1.5	23
156	Laser photoionization of polarized Ar atoms produced by excitation with synchrotron radiation. Journal of Physics B: Atomic, Molecular and Optical Physics, 2000, 33, 391-405.	1.5	18
157	K-shell photoionization of CO: I. Angular distributions of photoelectrons from fixed-in-space molecules. Journal of Physics B: Atomic, Molecular and Optical Physics, 2000, 33, 4193-4212.	1.5	63
158	K-shell photoionization of CO: II. Determination of dipole matrix elements and phase differences. Journal of Physics B: Atomic, Molecular and Optical Physics, 2000, 33, 4213-4236.	1.5	74
159	An Auger electron-threshold photoelectron coincidence spectrometer for studies of atomic and molecular dications. Measurement Science and Technology, 2000, 11, 1697-1702.	2.6	24
160	Photoelectron Angular Distributions from OKShell of Oriented CO Molecules: A Critical Comparison between Theory and Experiment. Physical Review Letters, 2000, 85, 46-49.	7.8	35
161	Manifestation of Many-Electron Correlations in Photoionization of the KShell of N2. Physical Review Letters, 2000, 84, 250-253.	7.8	63
162	Photoelectron-fragment ion correlations and fixed-molecule photoelectron angular distributions from velocity imaging coincidence experiments. Faraday Discussions, 2000, 115, 119-126.	3.2	33

#	Article	IF	CITATIONS
163	Molecular frame photoelectron angular distributions in inner valence photoionisation of CO. Physical Chemistry Chemical Physics, 2000, 2, 4663-4668.	2.8	12
164	New results on photoion pair formation from application of the velocity imaging photoionisation coincidence technique. Rapid Communications in Mass Spectrometry, 2000, 14, 2305-2311.	1.5	2
165	Spectator- and participant-like behavior of a Rydberg electron on predissociation of superexcited states of OCS. Journal of Chemical Physics, 1999, 110, 335-344.	3.0	12
166	Superexcited states of OCS probed by using photoelectron spectroscopy for autoionizing atomic sulfur. Journal of Chemical Physics, 1997, 107, 2950-2961.	3.0	16
167	Two-dimensional photoelectron spectroscopy of acetylene: Rydberg-valence interaction between the (3Ïfg)â^'1(3pÏfu)1 and (3Ïfg)â^'1(3Ïfu)1 states. Journal of Chemical Physics, 1997, 106, 4902-4911.	3.0	19
168	Autoionization of NO in an excited valence state affected by perturbations from valence-Rydberg mixing. Journal of Electron Spectroscopy and Related Phenomena, 1996, 79, 395-400.	1.7	13
169	Electronic energy relaxation of benzophenone vapor. Chemical Physics, 1996, 203, 137-142.	1.9	1
170	Formation of autoionizing atomic nitrogen from superexcited states of nitric oxide. Journal of Chemical Physics, 1996, 105, 6367-6374.	3.0	10