Valery Krizhanovsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4300154/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature, 2007, 445, 656-660.	27.8	2,159
2	Senescence of Activated Stellate Cells Limits Liver Fibrosis. Cell, 2008, 134, 657-667.	28.9	1,597
3	Cellular Senescence: Defining a Path Forward. Cell, 2019, 179, 813-827.	28.9	1,551
4	Senescence Is a Developmental Mechanism that Contributes to Embryonic Growth and Patterning. Cell, 2013, 155, 1119-1130.	28.9	898
5	Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nature Reviews Molecular Cell Biology, 2021, 22, 75-95.	37.0	812
6	Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nature Communications, 2016, 7, 11190.	12.8	659
7	Non-Cell-Autonomous Tumor Suppression by p53. Cell, 2013, 153, 449-460.	28.9	603
8	A Novel Role for High-Mobility Group A Proteins in Cellular Senescence and Heterochromatin Formation. Cell, 2006, 126, 503-514.	28.9	529
9	Impaired immune surveillance accelerates accumulation of senescent cells and aging. Nature Communications, 2018, 9, 5435.	12.8	325
10	Quantitative identification of senescent cells in aging and disease. Aging Cell, 2017, 16, 661-671.	6.7	269
11	The promises and perils of p53. Nature, 2009, 460, 1085-1086.	27.8	257
12	Pan-cancer single-cell RNA-seq identifies recurring programs of cellular heterogeneity. Nature Genetics, 2020, 52, 1208-1218.	21.4	226
13	NKG2D ligands mediate immunosurveillance of senescent cells. Aging, 2016, 8, 328-344.	3.1	211
14	Cell fusion induced by ERVWE1 or measles virus causes cellular senescence. Genes and Development, 2013, 27, 2356-2366.	5.9	198
15	Granule exocytosis mediates immune surveillance of senescent cells. Oncogene, 2013, 32, 1971-1977.	5.9	192
16	p21 maintains senescent cell viability under persistent <scp>DNA</scp> damage response by restraining <scp>JNK</scp> and caspase signaling. EMBO Journal, 2017, 36, 2280-2295.	7.8	187
17	Physiological and pathological consequences of cellular senescence. Cellular and Molecular Life Sciences, 2014, 71, 4373-4386.	5.4	182
18	Senescent cells: SASPected drivers of age-related pathologies. Biogerontology, 2014, 15, 627-642.	3.9	172

VALERY KRIZHANOVSKY

#	Article	IF	CITATIONS
19	Tissue-specific and reversible RNA interference in transgenic mice. Nature Genetics, 2007, 39, 914-921.	21.4	170
20	Strategies targeting cellular senescence. Journal of Clinical Investigation, 2018, 128, 1247-1254.	8.2	153
21	Immunosurveillance of senescent cells: the bright side of the senescence program. Biogerontology, 2013, 14, 617-628.	3.9	150
22	Implications of Cellular Senescence in Tissue Damage Response, Tumor Suppression, and Stem Cell Biology. Cold Spring Harbor Symposia on Quantitative Biology, 2008, 73, 513-522.	1.1	116
23	Senescent cells communicate via intercellular protein transfer. Genes and Development, 2015, 29, 791-802.	5.9	116
24	The ECM path of senescence in aging: components and modifiers. FEBS Journal, 2020, 287, 2636-2646.	4.7	102
25	Math1 controls cerebellar granule cell differentiation by regulating multiple components of the Notch signaling pathway. Development (Cambridge), 2004, 131, 903-913.	2.5	94
26	Senescent cell turnover slows with age providing an explanation for the Gompertz law. Nature Communications, 2019, 10, 5495.	12.8	94
27	A Novel Putative Neuropeptide Receptor Expressed in Neural Tissue, Including Sensory Epithelia. Biochemical and Biophysical Research Communications, 1995, 209, 752-759.	2.1	88
28	Dual Control of Neurogenesis by <i>PC3</i> through Cell Cycle Inhibition and Induction of <i>Math1</i> . Journal of Neuroscience, 2004, 24, 3355-3369.	3.6	80
29	Rapid entry of bitter and sweet tastants into liposomes and taste cells: implications for signal transduction. American Journal of Physiology - Cell Physiology, 2000, 278, C17-C25.	4.6	71
30	Transcriptional Heterogeneity of Beta Cells in the Intact Pancreas. Developmental Cell, 2019, 48, 115-125.e4.	7.0	70
31	Molecular pathways of senescence regulate placental structure and function. EMBO Journal, 2019, 38, e100849.	7.8	61
32	Age-associated inflammation connects RAS-induced senescence to stem cell dysfunction and epidermal malignancy. Cell Death and Differentiation, 2015, 22, 1764-1774.	11.2	56
33	Cell Senescence, DNA Damage, and Metabolism. Antioxidants and Redox Signaling, 2021, 34, 324-334.	5.4	54
34	An oligoclonal antibody durably overcomes resistance of lung cancer to thirdâ€generation <scp>EGFR</scp> inhibitors. EMBO Molecular Medicine, 2018, 10, 294-308.	6.9	46
35	A novel role for the choroid plexus in BMP-mediated inhibition of differentiation of cerebellar neural progenitors. Mechanisms of Development, 2006, 123, 67-75.	1.7	45
36	p53 in Bronchial Club Cells Facilitates Chronic Lung Inflammation by Promoting Senescence. Cell Reports, 2018, 22, 3468-3479.	6.4	35

VALERY KRIZHANOVSKY

#	Article	IF	CITATIONS
37	A new Twist in kidney fibrosis. Nature Medicine, 2015, 21, 975-977.	30.7	32
38	Math1 Target Genes Are Enriched With Evolutionarily Conserved Clustered E-box Binding Sites. Journal of Molecular Neuroscience, 2006, 28, 211-230.	2.3	26
39	Senolytic elimination of Cox2-expressing senescent cells inhibits the growth of premalignant pancreatic lesions. Gut, 2022, 71, 345-355.	12.1	26
40	Sucrose-stimulated subsecond transient increase in cGMP level in rat intact circumvallate taste bud cells. American Journal of Physiology - Cell Physiology, 2000, 279, C120-C125.	4.6	25
41	Natural Killer Cell-Dependent Anti-Fibrotic Pathway in Liver Injury via Toll-Like Receptor-9. PLoS ONE, 2013, 8, e82571.	2.5	21
42	Telomere Homeostasis and Senescence Markers Are Differently Expressed in Placentas From Pregnancies With Early- Versus Late-Onset Preeclampsia. Reproductive Sciences, 2019, 26, 1203-1209.	2.5	20
43	The anti-aging promise of p21. Cell Cycle, 2017, 16, 1997-1998.	2.6	17
44	Regulation and function of Myb-binding protein 1A (MYBBP1A) in cellular senescence and pathogenesis of head and neck cancer. Cancer Letters, 2015, 358, 191-199.	7.2	15
45	Senescent cells talk frankly with their neighbors. Cell Cycle, 2015, 14, 2181-2182.	2.6	12
46	Senescent cell death brings hopes to life. Cell Cycle, 2017, 16, 9-10.	2.6	11
47	Cell fusion induced senescence. Aging, 2014, 6, 353-354.	3.1	9
48	Natural killers of cognition. Nature Neuroscience, 2021, 24, 2-4.	14.8	7
49	Genotype identification of Math1/LacZ knockout mice based on real-time PCR with SYBR Green I dye. Journal of Neuroscience Methods, 2004, 136, 187-192.	2.5	6
50	Senescence and Telomere Homeostasis Might Be Involved in Placenta Percreta—Preliminary Investigation. Reproductive Sciences, 2018, 25, 1254-1260.	2.5	6
51	The intricate nature of senescence in development and cell plasticity. Seminars in Cancer Biology, 2022, 87, 214-219.	9.6	6
52	A Multiparametric Assay to Evaluate Senescent Cells. Methods in Molecular Biology, 2019, 1896, 107-117.	0.9	5
53	Breathe it in $\hat{a} \in \mathcal{C}$ Spotlight on senescence and regeneration in the lung. Mechanisms of Ageing and Development, 2021, 199, 111550.	4.6	5
54	mTOR signaling orchestrates the expression of cytoprotective factors during cellular senescence. Oncotarget, 2016, 7, 48859-48859.	1.8	4

#	Article	IF	CITATIONS
55	Quantitative Identification of Senescent Cells in Cancer. Methods in Molecular Biology, 2019, 1884, 259-267.	0.9	3
56	Modulation of Two Second Messengers in Bitter Taste Transduction of Agriculturally Relevant Compounds. ACS Symposium Series, 2002, , 18-31.	0.5	1
57	Stem cells: The promises and perils of p53. Nature, 0, , .	27.8	0
58	Cellular Senescence Limits the Extent of Fibrosis Following Liver Damage. , 2013, , 291-301.		0