
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/430007/publications.pdf Version: 2024-02-01

MADE R VIANT

#	Article	IF	CITATIONS
1	Spatially Mapping the Baseline and Bisphenol-A Exposed Daphnia magna Lipidome Using Desorption Electrospray Ionization—Mass Spectrometry. Metabolites, 2022, 12, 33.	1.3	3
2	Integrating in vitro metabolomics with a 96-well high-throughput screening platform. Metabolomics, 2022, 18, 11.	1.4	15
3	Automated Sample Preparation and Data Collection Workflow for High-Throughput In Vitro Metabolomics. Metabolites, 2022, 12, 52.	1.3	6
4	Knowledge-Driven Approaches to Create the MTox700+ Metabolite Panel for Predicting Toxicity. Toxicological Sciences, 2022, 186, 208-220.	1.4	7
5	Microbiome function predicts amphibian chytridiomycosis disease dynamics. Microbiome, 2022, 10, 44.	4.9	12
6	The metabolic response of marine copepods (Calanus spp.) to food deprivation, end-of-century ocean acidification, and global warming scenarios. , 2022, , 153-166.		0
7	Space and patchiness affects diversity–function relationships in fungal decay communities. ISME Journal, 2021, 15, 720-731.	4.4	2
8	Environmentally Relevant Iron Oxide Nanoparticles Produce Limited Acute Pulmonary Effects in Rats at Realistic Exposure Levels. International Journal of Molecular Sciences, 2021, 22, 556.	1.8	13
9	Species-Specific Variations in the Metabolomic Profiles of Acropora hyacinthus and Acropora millepora Mask Acute Temperature Stress Effects in Adult Coral Colonies. Frontiers in Marine Science, 2021, 8, .	1.2	6
10	Resurrecting the metabolome: Rapid evolution magnifies the metabolomic plasticity to predation in a natural <i>Daphnia</i> population. Molecular Ecology, 2021, 30, 2285-2297.	2.0	6
11	Acoustic Mist Ionization Mass Spectrometry for Ultrahigh-Throughput Metabolomics Screening. Analytical Chemistry, 2021, 93, 9258-9266.	3.2	11
12	Modeling the metabolic profile of Mytilus edulis reveals molecular signatures linked to gonadal development, sex and environmental site. Scientific Reports, 2021, 11, 12882.	1.6	3
13	An Extensive Metabolomics Workflow to Discover Cardiotoxin-Induced Molecular Perturbations in Microtissues. Metabolites, 2021, 11, 644.	1.3	2
14	Progress towards an OECD reporting framework for transcriptomics and metabolomics in regulatory toxicology. Regulatory Toxicology and Pharmacology, 2021, 125, 105020.	1.3	46
15	Energy Starvation in Daphnia magna from Exposure to a Lithium Cobalt Oxide Nanomaterial. Chemical Research in Toxicology, 2021, 34, 2287-2297.	1.7	9
16	An integrated host-microbiome response to atrazine exposure mediates toxicity in Drosophila. Communications Biology, 2021, 4, 1324.	2.0	10
17	Vision of a near future: Bridging the human health–environment divide. Toward an integrated strategy to understand mechanisms across species for chemical safety assessment. Toxicology in Vitro, 2020, 62, 104692.	1.1	33
18	New ideas for non-animal approaches to predict repeated-dose systemic toxicity: Report from an EPAA Blue Sky Workshop. Regulatory Toxicology and Pharmacology, 2020, 114, 104668.	1,3	33

#	Article	IF	CITATIONS
19	Characterisation of the dynamic nature of lipids throughout the lifespan of genetically identical female and male Daphnia magna. Scientific Reports, 2020, 10, 5576.	1.6	4
20	Use cases, best practice and reporting standards for metabolomics in regulatory toxicology. Nature Communications, 2019, 10, 3041.	5.8	131
21	Multiple metabolic pathways are predictive of ricin intoxication in a rat model. Metabolomics, 2019, 15, 102.	1.4	8
22	International Ring Trial of a High Resolution Targeted Metabolomics and Lipidomics Platform for Serum and Plasma Analysis. Analytical Chemistry, 2019, 91, 14407-14416.	3.2	66
23	Pulmonary toxicity of inhaled nano-sized cerium oxide aerosols in Sprague–Dawley rats. Nanotoxicology, 2019, 13, 733-750.	1.6	27
24	Metabolomic method to detect a metabolite corona on amino-functionalized polystyrene nanoparticles. Nanotoxicology, 2019, 13, 783-794.	1.6	24
25	Improved Algal Toxicity Test System for Robust Omics-Driven Mode-of-Action Discovery in Chlamydomonas reinhardtii. Metabolites, 2019, 9, 94.	1.3	4
26	Confidence in metabolite identification dictates the applicability of metabolomics to regulatory toxicology. Current Opinion in Toxicology, 2019, 16, 32-38.	2.6	17
27	PhenoMeNal: processing and analysis of metabolomics data in the cloud. GigaScience, 2019, 8, .	3.3	60
28	Terahertz VRT spectroscopy of the water hexamer-d12 prism: Dramatic enhancement of bifurcation tunneling upon librational excitation. Journal of Chemical Physics, 2018, 148, .	1.2	9
29	Comparison of modified Matyash method to conventional solvent systems for polar metabolite and lipid extractions. Analytica Chimica Acta, 2018, 1037, 301-315.	2.6	75
30	Use of 5-azacytidine in a proof-of-concept study to evaluate the impact of pre-natal and post-natal exposures, as well as within generation persistent DNA methylation changes in Daphnia. Ecotoxicology, 2018, 27, 556-568.	1.1	26
31	nmrML: A Community Supported Open Data Standard for the Description, Storage, and Exchange of NMR Data. Analytical Chemistry, 2018, 90, 649-656.	3.2	50
32	Metabolomics Discovers Early-Response Metabolic Biomarkers that Can Predict Chronic Reproductive Fitness in Individual Daphnia magna. Metabolites, 2018, 8, 42.	1.3	37
33	Quantitative Lipoprotein Subclass and Low Molecular Weight Metabolite Analysis in Human Serum and Plasma by ¹ H NMR Spectroscopy in a Multilaboratory Trial. Analytical Chemistry, 2018, 90, 11962-11971.	3.2	165
34	How omics technologies can enhance chemical safety regulation: perspectives from academia, government, and industry. Environmental Toxicology and Chemistry, 2018, 37, 1252-1259.	2.2	12
35	Multi-omics approaches confirm metal ions mediate the main toxicological pathways of metal-bearing nanoparticles in lung epithelial A549 cells. Environmental Science: Nano, 2018, 5, 1506-1517.	2.2	27
36	Terahertz VRT Spectroscopy of the Water Hexamer-h12 Cage: Dramatic Libration-Induced Enhancement of Hydrogen Bond Tunneling Dynamics. Journal of Physical Chemistry A, 2018, 122, 7421-7426.	1.1	6

#	Article	IF	CITATIONS
37	Biodiversity in marine invertebrate responses to acute warming revealed by a comparative multiâ€omics approach. Global Change Biology, 2017, 23, 318-330.	4.2	80
38	Computational tools and workflows in metabolomics: An international survey highlights the opportunity for harmonisation through Galaxy. Metabolomics, 2017, 13, 12.	1.4	69
39	Regional adaptation defines sensitivity to future ocean acidification. Nature Communications, 2017, 8, 13994.	5.8	78
40	Hydrogen bond breaking dynamics in the water pentamer: Terahertz VRT spectroscopy of a 20 <i>μ</i> m libration. Journal of Chemical Physics, 2017, 146, 014306.	1.2	15
41	A complete workflow for high-resolution spectral-stitching nanoelectrospray direct-infusion mass-spectrometry-based metabolomics and lipidomics. Nature Protocols, 2017, 12, 310-328.	5.5	121
42	How close are we to complete annotation of metabolomes?. Current Opinion in Chemical Biology, 2017, 36, 64-69.	2.8	228
43	Miniaturising acute toxicity and feeding rate measurements in Daphnia magna. Ecotoxicology and Environmental Safety, 2017, 139, 352-357.	2.9	20
44	msPurity: Automated Evaluation of Precursor Ion Purity for Mass Spectrometry-Based Fragmentation in Metabolomics. Analytical Chemistry, 2017, 89, 2432-2439.	3.2	40
45	Quality assurance and quality control processes: summary of a metabolomics community questionnaire. Metabolomics, 2017, 13, 1.	1.4	53
46	mzML2ISA & nmrML2ISA: generating enriched ISA-Tab metadata files from metabolomics XML data. Bioinformatics, 2017, 33, 2598-2600.	1.8	12
47	Automated development of an LC-MS/MS method for measuring multiple vitamin D metabolites using MUSCLE software. Analytical Methods, 2017, 9, 2723-2731.	1.3	8
48	Aromatic metabolites from the coelomic fluid of Eisenia earthworm species. European Journal of Soil Biology, 2017, 78, 17-19.	1.4	12
49	Automated assembly of species metabolomes through data submission into a public repository. GigaScience, 2017, 6, 1-4.	3.3	9
50	The Role of Omics in the Application of Adverse Outcome Pathways for Chemical Risk Assessment. Toxicological Sciences, 2017, 158, 252-262.	1.4	161
51	Application of Passive Sampling to Characterise the Fish Exometabolome. Metabolites, 2017, 7, 8.	1.3	4
52	Defining the Baseline and Oxidant Perturbed Lipidomic Profiles of Daphnia magna. Metabolites, 2017, 7, 11.	1.3	9
53	The future of metabolomics in ELIXIR. F1000Research, 2017, 6, 1649.	0.8	19
54	The future of metabolomics in ELIXIR. F1000Research, 2017, 6, 1649.	0.8	11

#	Article	IF	CITATIONS
55	Molecular toxicity of cerium oxide nanoparticles to the freshwater alga <i>Chlamydomonas reinhardtii</i> is associated with supra-environmental exposure concentrations. Nanotoxicology, 2016, 10, 1-10.	1.6	70
56	The Time Is Right to Focus on Model Organism Metabolomes. Metabolites, 2016, 6, 8.	1.3	63
57	Optimisation of DNA extraction from the crustacean <i>Daphnia</i> . PeerJ, 2016, 4, e2004.	0.9	26
58	Defensive and adverse energyâ€related molecular responses precede tris (1, 3â€dichloroâ€2â€propyl) phosphate cytotoxicity. Journal of Applied Toxicology, 2016, 36, 649-658.	1.4	6
59	Metabolomics reveals an involvement of pantothenate for male production responding to the short-day stimulus in the water flea, Daphnia pulex. Scientific Reports, 2016, 6, 25125.	1.6	36
60	Non-targeted UHPLC-MS metabolomic data processing methods: a comparative investigation of normalisation, missing value imputation, transformation and scaling. Metabolomics, 2016, 12, 93.	1.4	232
61	Protein Corona Modulates Uptake and Toxicity of Nanoceria <i>via</i> Clathrin-Mediated Endocytosis. Biological Bulletin, 2016, 231, 40-60.	0.7	48
62	Omega-3 and alpha-tocopherol provide more protection against contaminants in novel feeds for Atlantic salmon (Salmo salar L.) than omega-6 and gamma tocopherol. Toxicology Reports, 2016, 3, 211-224.	1.6	20
63	Galaxy-M: a Galaxy workflow for processing and analyzing direct infusion and liquid chromatography mass spectrometry-based metabolomics data. GigaScience, 2016, 5, 10.	3.3	78
64	Metabolomics confirms that dissolved organic carbon mitigates copper toxicity. Environmental Toxicology and Chemistry, 2016, 35, 635-644.	2.2	19
65	Data standards can boost metabolomics research, and if there is a will, there is a way. Metabolomics, 2016, 12, 14.	1.4	97
66	Wolbachia Modulates Lipid Metabolism in Aedes albopictus Mosquito Cells. Applied and Environmental Microbiology, 2016, 82, 3109-3120.	1.4	100
67	Predicting chronic copper and nickel reproductive toxicity to Daphnia pulex-pulicaria from whole-animal metabolic profiles. Environmental Pollution, 2016, 212, 325-329.	3.7	29
68	Statistical Correlations between NMR Spectroscopy and Direct Infusion FT-ICR Mass Spectrometry Aid Annotation of Unknowns in Metabolomics. Analytical Chemistry, 2016, 88, 2583-2589.	3.2	25
69	Gene expression and metabolic responses of HepG2/C3A cells exposed to flame retardants and dust extracts at concentrations relevant to indoor environmental exposures. Chemosphere, 2016, 144, 1996-2003.	4.2	13
70	Mass Spectrometry Based Metabolomics Comparison of Liver Grafts from Donors after Circulatory Death (DCD) and Donors after Brain Death (DBD) Used in Human Orthotopic Liver Transplantation. PLoS ONE, 2016, 11, e0165884.	1.1	17
71	The metabolic response of marine copepods to environmental warming and ocean acidification in the absence of food. Scientific Reports, 2015, 5, 13690.	1.6	50
72	Far-infrared VRT spectroscopy of the water dimer: Characterization of the 20 μm out-of-plane librational vibration. Journal of Chemical Physics, 2015, 143, 154306.	1.2	28

#	Article	IF	CITATIONS
73	Using community metabolomics as a new approach to discriminate marine microbial particulate organic matter in the western English Channel. Progress in Oceanography, 2015, 137, 421-433.	1.5	27
74	COordination of Standards in MetabOlomicS (COSMOS): facilitating integrated metabolomics data access. Metabolomics, 2015, 11, 1587-1597.	1.4	140
75	Transcriptomic and metabolomic approaches to investigate the molecular responses of human cell lines exposed to the flame retardant hexabromocyclododecane (HBCD). Toxicology in Vitro, 2015, 29, 2116-2123.	1.1	15
76	Drug Redeployment to Kill Leukemia and Lymphoma Cells by Disrupting SCD1-Mediated Synthesis of Monounsaturated Fatty Acids. Cancer Research, 2015, 75, 2530-2540.	0.4	48
77	High-resolution mass spectrometry provides novel insights into products of human metabolism of organophosphate and brominated flame retardants. Analytical and Bioanalytical Chemistry, 2015, 407, 1871-1883.	1.9	27
78	MUSCLE: automated multi-objective evolutionary optimization of targeted LC-MS/MS analysis. Bioinformatics, 2015, 31, 975-977.	1.8	17
79	The effect of perhexiline on myocardial protection during coronary artery surgery: a two-centre, randomized, double-blind, placebo-controlled trial. European Journal of Cardio-thoracic Surgery, 2015, 47, 464-472.	0.6	6
80	Systems Biology Approach Reveals a Calcium-Dependent Mechanism for Basal Toxicity in <i>Daphnia magna</i> . Environmental Science & Technology, 2015, 49, 11132-11140.	4.6	28
81	Training needs in metabolomics. Metabolomics, 2015, 11, 784-786.	1.4	11
82	Embedding standards in metabolomics: the Metabolomics Society data standards task group. Metabolomics, 2015, 11, 782-783.	1.4	13
83	Robust twin boosting for feature selection from high-dimensional omics data with label noise. Information Sciences, 2015, 291, 1-18.	4.0	32
84	The year in review: highlights of the Metabolomics Society in 2014. Metabolomics, 2014, 10, 1043-1044.	1.4	0
85	Distinguishing between the metabolome and xenobiotic exposome in environmental field samples analysed by direct-infusion mass spectrometry based metabolomics and lipidomics. Metabolomics, 2014, 10, 1050-1058.	1.4	29
86	HAMMER: automated operation of mass frontier to construct <i>in silico</i> mass spectral fragmentation libraries. Bioinformatics, 2014, 30, 581-583.	1.8	36
87	Direct infusion mass spectrometry metabolomics dataset: a benchmark for data processing and quality control. Scientific Data, 2014, 1, 140012.	2.4	134
88	Molecular responses of European flounder (Platichthys flesus) chronically exposed to contaminated estuarine sediments. Chemosphere, 2014, 108, 152-158.	4.2	28
89	¹ H NMR Metabolomics Reveals Contrasting Response by Male and Female Mussels Exposed to Reduced Seawater pH, Increased Temperature, and a Pathogen. Environmental Science & Technology, 2014, 48, 7044-7052.	4.6	91
90	Toxicological effect of single contaminants and contaminant mixtures associated with plant ingredients in novel salmon feeds. Toxicology Letters, 2014, 229, S212-S213.	0.4	0

#	Article	IF	CITATIONS
91	Toxicological effect of single contaminants and contaminant mixtures associated with plant ingredients in novel salmon feeds. Food and Chemical Toxicology, 2014, 73, 157-174.	1.8	48
92	Modulation of the epigenome in fish carcinogenesis. Toxicology Letters, 2014, 229, S17.	0.4	0
93	The New Data Quality Task Group (DQTG): ensuring high quality data today and in the future. Metabolomics, 2014, 10, 539-540.	1.4	13
94	Supporting the industry sector of the metabolomics community: the remit of the Metabolomics Society's Industry Engagement Task Group. Metabolomics, 2014, 10, 541-542.	1.4	2
95	Metabolomics and proteomics reveal impacts of chemically mediated competition on marine plankton. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9009-9014.	3.3	112
96	Exo-Metabolome of Pseudovibrio sp. FO-BEG1 Analyzed by Ultra-High Resolution Mass Spectrometry and the Effect of Phosphate Limitation. PLoS ONE, 2014, 9, e96038.	1.1	57
97	Mass spectrometry based environmental metabolomics: a primer and review. Metabolomics, 2013, 9, 144-158.	1.4	124
98	Investigation of Terahertz Vibration–Rotation Tunneling Spectra for the Water Octamer. Journal of Physical Chemistry A, 2013, 117, 6960-6966.	1.1	52
99	Mass appeal: metabolite identification in mass spectrometry-focused untargeted metabolomics. Metabolomics, 2013, 9, 44-66.	1.4	452
100	The critical importance of defined media conditions in Daphnia magna nanotoxicity studies. Toxicology Letters, 2013, 223, 103-108.	0.4	40
101	The Impact of Inflammation on Metabolomic Profiles in Patients With Arthritis. Arthritis and Rheumatism, 2013, 65, 2015-2023.	6.7	140
102	The role of reporting standards for metabolite annotation and identification in metabolomic studies. GigaScience, 2013, 2, 13.	3.3	333
103	The year in review: highlights of the Metabolomics Society in 2013. Metabolomics, 2013, 9, 1129-1131.	1.4	0
104	Effect of perhexiline on myocardial protection during coronary artery surgery: a two-centre randomised double-blind placebo-controlled trial. Lancet, The, 2013, 381, S36.	6.3	1
105	Characterising and correcting batch variation in an automated direct infusion mass spectrometry (DIMS) metabolomics workflow. Analytical and Bioanalytical Chemistry, 2013, 405, 5147-5157.	1.9	123
106	Disruption of DNA Methylation via <i>S</i> -Adenosylhomocysteine Is a Key Process in High Incidence Liver Carcinogenesis in Fish. Journal of Proteome Research, 2013, 12, 2895-2904.	1.8	25
107	Anaerobic Metabolism at Thermal Extremes: A Metabolomic Test of the Oxygen Limitation Hypothesis in an Aquatic Insect. Integrative and Comparative Biology, 2013, 53, 609-619.	0.9	86
108	A Stable-Isotope Mass Spectrometry-Based Metabolic Footprinting Approach to Analyze Exudates from Phytoplankton. Marine Drugs, 2013, 11, 4158-4175.	2.2	17

#	Article	IF	CITATIONS
109	CASMI—The Small Molecule Identification Process from a Birmingham Perspective. Metabolites, 2013, 3, 397-411.	1.3	13
110	Proton NMR-Based Metabolite Analyses of Archived Serial Paired Serum and Urine Samples from Myeloma Patients at Different Stages of Disease Activity Identifies Acetylcarnitine as a Novel Marker of Active Disease. PLoS ONE, 2013, 8, e56422.	1.1	56
111	MaConDa: a publicly accessible mass spectrometry contaminants database. Bioinformatics, 2012, 28, 2856-2857.	1.8	34
112	Fumarate Is Cardioprotective via Activation of the Nrf2 Antioxidant Pathway. Cell Metabolism, 2012, 15, 361-371.	7.2	231
113	Biomarkers of Whale Shark Health: A Metabolomic Approach. PLoS ONE, 2012, 7, e49379.	1.1	47
114	Missing values in mass spectrometry based metabolomics: an undervalued step in the data processing pipeline. Metabolomics, 2012, 8, 161-174.	1.4	169
115	New web forum for Metabolomics Society's interest groups. Metabolomics, 2012, 8, 367-367.	1.4	0
116	Birmingham Metabolite Library: a publicly accessible database of 1-D 1H and 2-D 1H J-resolved NMR spectra of authentic metabolite standards (BML-NMR). Metabolomics, 2012, 8, 8-18.	1.4	137
117	Characterization of Isotopic Abundance Measurements in High Resolution FT-ICR and Orbitrap Mass Spectra for Improved Confidence of Metabolite Identification. Analytical Chemistry, 2011, 83, 3737-3743.	3.2	102
118	Metabolomics Reveals Target and Off-Target Toxicities of a Model Organophosphate Pesticide to Roach (Rutilus rutilus): Implications for Biomonitoring. Environmental Science & Technology, 2011, 45, 3759-3767.	4.6	68
119	Hypoxia Triggers Major Metabolic Changes in AML Cells without Altering Indomethacin-Induced TCA Cycle Deregulation. ACS Chemical Biology, 2011, 6, 169-175.	1.6	31
120	Metabolomics of Microliter Hemolymph Samples Enables an Improved Understanding of the Combined Metabolic and Transcriptional Responses of <i>Daphnia magna</i> to Cadmium. Environmental Science & Technology, 2011, 45, 3710-3717.	4.6	83
121	Structure and function of BamE within the outer membrane and the βâ€barrel assembly machine. EMBO Reports, 2011, 12, 123-128.	2.0	88
122	Aggregation and dispersion of silver nanoparticles in exposure media for aquatic toxicity tests. Journal of Chromatography A, 2011, 1218, 4226-4233.	1.8	192
123	Towards a System Level Understanding of Non-Model Organisms Sampled from the Environment: A Network Biology Approach. PLoS Computational Biology, 2011, 7, e1002126.	1.5	83
124	NMRâ€based metabolomic analysis of cerebrospinal fluid and serum in neurological diseases – a diagnostic tool?. NMR in Biomedicine, 2010, 23, 123-132.	1.6	105
125	Approaches to interpretation of â€~Omics data: Identification of responses in European Flounder populations sampled from sites with different levels of environmental pollutants. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2010, 157, S3.	0.8	0
126	MI-Pack: Increased confidence of metabolite identification in mass spectra by integrating accurate masses and metabolic pathways. Chemometrics and Intelligent Laboratory Systems, 2010, 104, 75-82.	1.8	78

#	Article	IF	CITATIONS
127	Linked Metabolites: A tool for the construction of directed metabolic graphs. Computers in Biology and Medicine, 2010, 40, 340-349.	3.9	4
128	Twoâ€dimensional <i>J</i> â€resolved NMR spectroscopy: review of a key methodology in the metabolomics toolbox. Phytochemical Analysis, 2010, 21, 22-32.	1.2	208
129	Discovery of Metabolic Signatures for Predicting Whole Organism Toxicology. Toxicological Sciences, 2010, 115, 369-378.	1.4	74
130	Discriminating between Different Acute Chemical Toxicities via Changes in the Daphnid Metabolome. Toxicological Sciences, 2010, 118, 307-317.	1.4	67
131	Identifying Health Impacts of Exposure to Copper Using Transcriptomics and Metabolomics in a Fish Model. Environmental Science & Technology, 2010, 44, 820-826.	4.6	152
132	Metabolic responses produced by crude versus dispersed oil in Chinook salmon pre-smolts via NMR-based metabolomics. Ecotoxicology and Environmental Safety, 2010, 73, 710-717.	2.9	35
133	Hepatic transcriptomic and metabolomic responses in the Stickleback (Gasterosteus aculeatus) exposed to ethinyl-estradiol. Aquatic Toxicology, 2010, 97, 174-187.	1.9	71
134	Application of Metabolomics to Investigate the Process of Human Orthotopic Liver Transplantation: A Proof-of-Principle Study. OMICS A Journal of Integrative Biology, 2010, 14, 143-150.	1.0	39
135	Metabolomic Profiling of Drug Responses in Acute Myeloid Leukaemia Cell Lines. PLoS ONE, 2009, 4, e4251.	1.1	101
136	Combined Bezafibrate and Medroxyprogesterone Acetate: Potential Novel Therapy for Acute Myeloid Leukaemia. PLoS ONE, 2009, 4, e8147.	1.1	63
137	Lineâ€shape analysis of <i>J</i> â€resolved NMR spectra: application to metabolomics and quantification of intensity errors from signal processing and high signal congestion. Magnetic Resonance in Chemistry, 2009, 47, S86-95.	1.1	30
138	Fast targeted multidimensional NMR metabolomics of colorectal cancer. Magnetic Resonance in Chemistry, 2009, 47, S68-73.	1.1	83
139	Analysis of time course ¹ H NMR metabolomics data by multivariate curve resolution. Magnetic Resonance in Chemistry, 2009, 47, S105-17.	1.1	33
140	A new approach to toxicity testing in Daphnia magna: application of high throughput FT-ICR mass spectrometry metabolomics. Metabolomics, 2009, 5, 44-58.	1.4	118
141	Environmental metabolomics: a critical review and future perspectives. Metabolomics, 2009, 5, 3-21.	1.4	656
142	Applications of metabolomics to the environmental sciences. Metabolomics, 2009, 5, 1-2.	1.4	44
143	Profiling MS proteomics data using smoothed nonâ€linear energy operator and Bayesian additive regression trees. Proteomics, 2009, 9, 4176-4191.	1.3	7
144	A signal filtering method for improved quantification and noise discrimination in fourier transform ion cyclotron resonance mass spectrometry-based metabolomics data. Journal of the American Society for Mass Spectrometry, 2009, 20, 1087-1095.	1.2	65

#	Article	IF	CITATIONS
145	Hepatic Transcriptomic and Metabolomic Responses in the Stickleback (<i>Gasterosteus aculeatus</i>) Exposed to Environmentally Relevant Concentrations of Dibenzanthracene. Environmental Science & Technology, 2009, 43, 6341-6348.	4.6	71
146	Characterization of the metabolic actions of crude versus dispersed oil in salmon smolts via NMR-based metabolomics. Aquatic Toxicology, 2009, 95, 230-238.	1.9	44
147	International NMR-Based Environmental Metabolomics Intercomparison Exercise. Environmental Science & March & Science	4.6	139
148	Spectral relative standard deviation: a practical benchmark in metabolomics. Analyst, The, 2009, 134, 478-485.	1.7	163
149	Effects of the application of different window functions and projection methods on processing of 1H J-resolved nuclear magnetic resonance spectra for metabolomics. Analytica Chimica Acta, 2008, 610, 80-88.	2.6	29
150	Improved identification of metabolites in complex mixtures using HSQC NMR spectroscopy. Analytica Chimica Acta, 2008, 614, 127-133.	2.6	64
151	High-throughput tissue extraction protocol for NMR- and MS-based metabolomics. Analytical Biochemistry, 2008, 372, 204-212.	1.1	551
152	Optimized metabolite extraction from blood serum for 1H nuclear magnetic resonance spectroscopy. Analytical Biochemistry, 2008, 377, 16-23.	1.1	164
153	Recent developments in environmental metabolomics. Molecular BioSystems, 2008, 4, 980.	2.9	169
154	Metabolic Changes in Flatfish Hepatic Tumours Revealed by NMR-Based Metabolomics and Metabolic Correlation Networks. Journal of Proteome Research, 2008, 7, 5277-5285.	1.8	60
155	Revealing the Metabolome of Animal Tissues Using 1H Nuclear Magnetic Resonance Spectroscopy. Methods in Molecular Biology, 2007, 358, 229-246.	0.4	73
156	Dynamic Range and Mass Accuracy of Wide-Scan Direct Infusion Nanoelectrospray Fourier Transform Ion Cyclotron Resonance Mass Spectrometry-Based Metabolomics Increased by the Spectral Stitching Method. Analytical Chemistry, 2007, 79, 4595-4602.	3.2	170
157	Direct Sampling of Organisms from the Field and Knowledge of their Phenotype:Â Key Recommendations for Environmental Metabolomics. Environmental Science & Technology, 2007, 41, 3375-3381.	4.6	134
158	Comparison of histological, genetic, metabolomics, and lipid-based methods for sex determination in marine mussels. Analytical Biochemistry, 2007, 369, 175-186.	1.1	65
159	Variance stabilising transformations for NMR metabolomics data. BMC Systems Biology, 2007, 1, .	3.0	2
160	Improved classification accuracy in 1- and 2-dimensional NMR metabolomics data using the variance stabilising generalised logarithm transformation. BMC Bioinformatics, 2007, 8, 234.	1.2	188
161	Databases and Standardisation of Reporting Methods for Metabolic Studies. , 2007, , 227-239.		0
162	Proposed reporting requirements for the description of NMR-based metabolomics experiments. Metabolomics, 2007, 3, 223-229.	1.4	49

#	Article	IF	CITATIONS
163	Evaluation of metabolite extraction strategies from tissue samples using NMR metabolomics. Metabolomics, 2007, 3, 55-67.	1.4	345
164	Standard reporting requirements for biological samples in metabolomics experiments: environmental context. Metabolomics, 2007, 3, 203-210.	1.4	93
165	Metabolomics standards initiative: ontology working group work in progress. Metabolomics, 2007, 3, 249-256.	1.4	52
166	Proposed minimum reporting standards for chemical analysis. Metabolomics, 2007, 3, 211-221.	1.4	3,589
167	Validation of a urine metabolome fingerprint in dog for phenotypic classification. Metabolomics, 2007, 3, 453-463.	1.4	40
168	Developmental rates, structural asymmetry, and metabolic fingerprints of steelhead trout (Oncorhynchus mykiss) eggs incubated at two temperatures. Fish Physiology and Biochemistry, 2007, 33, 59-72.	0.9	19
169	Metabolomics of aquatic organisms: the new 'omics' on the block. Marine Ecology - Progress Series, 2007, 332, 301-306.	0.9	151
170	Heuristic Search for 2D NMR Alignment to Support Metabolite Identification. Lecture Notes in Computer Science, 2007, , 447-458.	1.0	0
171	Effects of Temperature on Hostâ^'Pathogenâ^'Drug Interactions in Red Abalone,Haliotis rufescens, Determined by1H NMR Metabolomics. Environmental Science & Technology, 2006, 40, 7077-7084.	4.6	37
172	Toxic actions of dinoseb in medaka (Oryzias latipes) embryos as determined by in vivo 31P NMR, HPLC-UV and 1H NMR metabolomics. Aquatic Toxicology, 2006, 76, 329-342.	1.9	101
173	Metabolic effects of dinoseb, diazinon and esfenvalerate in eyed eggs and alevins of Chinook salmon (Oncorhynchus tshawytscha) determined by 1H NMR metabolomics. Aquatic Toxicology, 2006, 77, 359-371.	1.9	132
174	Metabolomics: Methodologies and applications in the environmental sciences. Journal of Pesticide Sciences, 2006, 31, 245-251.	0.8	170
175	Cellular responses to temperature stress in steelhead trout (Onchorynchus mykiss) parr with different rearing histories. Fish Physiology and Biochemistry, 2006, 32, 261-273.	0.9	21
176	Automated screening for metabolites in complex mixtures using 2D COSY NMR spectroscopy. Metabolomics, 2006, 2, 221-233.	1.4	48
177	"Omics" Approaches in the Context of Environmental Toxicology. , 2006, , 1-31.		0
178	An NMR metabolomic investigation of early metabolic disturbances following traumatic brain injury in a mammalian model. NMR in Biomedicine, 2005, 18, 507-516.	1.6	94
179	Characterizing the metabolic actions of natural stresses in the California red abalone, Haliotis rufescens using 1H NMR metabolomics. Metabolomics, 2005, 1, 199-209.	1.4	73
180	NMR-derived developmental metabolic trajectories: an approach for visualizing the toxic actions of trichloroethylene during embryogenesis. Metabolomics, 2005, 1, 149-158.	1.4	88

#	Article	IF	CITATIONS
181	Influence of organic carbon on reductive dechlorination of thiobencarb in California rice field soils. Pest Management Science, 2005, 61, 68-74.	1.7	7
182	Liver Tumors in Wild Flatfish: A Histopathological, Proteomic, and Metabolomic Study. OMICS A Journal of Integrative Biology, 2005, 9, 281-299.	1.0	82
183	Water Pentamer:  Characterization of the Torsional-Puckering Manifold by Terahertz VRT Spectroscopy. Journal of Physical Chemistry A, 2005, 109, 6483-6497.	1.1	37
184	Metabolic changes in Japanese medaka (Oryzias latipes) during embryogenesis and hypoxia as determined by in vivo 31P NMR. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2005, 140, 103-113.	1.3	31
185	Environmental Metabolomics Using 9 \$^{1}\$ H-NMR Spectroscopy. Methods in Molecular Biology, 2005, 410, 137-150.	0.4	21
186	Characterization of California Rice Field Soils Susceptible to Delayed Phytotoxicity Syndrome. Bulletin of Environmental Contamination and Toxicology, 2004, 73, 448-56.	1.3	1
187	Discrimination Models Using Variance-Stabilizing Transformation of Metabolomic NMR Data. OMICS A Journal of Integrative Biology, 2004, 8, 118-130.	1.0	106
188	Correlation between heat-shock protein induction and reduced metabolic condition in juvenile steelhead trout (Oncorhynchus mykiss) chronically exposed to elevated temperature. Fish Physiology and Biochemistry, 2003, 29, 159-171.	0.9	104
189	NMR-Based Metabolomics:Â A Powerful Approach for Characterizing the Effects of Environmental Stressors on Organism Health. Environmental Science & Technology, 2003, 37, 4982-4989.	4.6	406
190	Improved methods for the acquisition and interpretation of NMR metabolomic data. Biochemical and Biophysical Research Communications, 2003, 310, 943-948.	1.0	293
191	Toxicokinetics and biotransformation of p-nitrophenol in red abalone (Haliotis rufescens). Aquatic Toxicology, 2003, 62, 329-336.	1.9	7
192	Oral Estrogen Masculinizes Female Zebra Finch Song System. Hormones and Behavior, 2002, 41, 236-241.	1.0	25
193	Utilizing in vivo nuclear magnetic resonance spectroscopy to study sublethal stress in aquatic organisms. Marine Environmental Research, 2002, 54, 553-557.	1.1	23
194	Sublethal actions of copper in abalone (Haliotis rufescens) as characterized by in vivo 31P NMR. Aquatic Toxicology, 2002, 57, 139-151.	1.9	53
195	An avian bioassay for environmental estrogens: The growth response of zebra finch (<i>Taeniopygia) Tj ETQq1 1 2663-2668.</i>	0.784314 r 2.2	rgBT /Over 18
196	AN AVIAN BIOASSAY FOR ENVIRONMENTAL ESTROGENS: THE GROWTH RESPONSE OF ZEBRA FINCH (TAENIOPYGIA GUTTATA) CHICK OVIDUCT TO ORAL ESTROGENS. Environmental Toxicology and Chemistry, 2002, 21, 2663.	2.2	2
197	An avian bioassay for environmental estrogens: the growth response of zebra finch (Taeniopygia) Tj ETQq1 1 0.7	84314 rgB [⊤] 2.2	r /Overlock
198	Hydrogen Bond Breaking Dynamics of the Water Trimer in the Translational and Librational Band Region of Liquid Water. Journal of the American Chemical Society, 2001, 123, 5938-5941.	6.6	42

#	Article	IF	CITATIONS
199	Optimized method for the determination of phosphoarginine in abalone tissue by high-performance liquid chromatography. Biomedical Applications, 2001, 765, 107-111.	1.7	38
200	Comparative Sublethal Actions of 3-Trifluoromethyl-4-nitrophenol in Marine Molluscs as Measured by in Vivo31P NMR. Pesticide Biochemistry and Physiology, 2001, 71, 40-47.	1.6	37
201	Far-infrared laser vibration–rotation–tunneling spectroscopy of water clusters in the librational band region of liquid water. Journal of Chemical Physics, 2001, 114, 4005-4015.	1.2	34
202	Regulation of brain-derived neurotrophic factor messenger RNA levels in avian hypothalamic slice cultures. Neuroscience, 2000, 99, 373-380.	1.1	12
203	Quantitative characterization of the (D2O)3 torsional manifold by terahertz laser spectroscopy and theoretical analysis. Journal of Chemical Physics, 1999, 110, 4369-4381.	1.2	53
204	Quantitative characterization of the water trimer torsional manifold by terahertz laser spectroscopy and theoretical analysis. II. (H2O)3. Journal of Chemical Physics, 1999, 111, 7789-7800.	1.2	49
205	Terahertz laser vibration–rotation–tunneling spectrum of the water pentamer–d10 Chemical Physics Letters, 1998, 292, 667-676.	1.2	18
206	Pseudorotation in Water Trimer Isotopomers Using Terahertz Laser Spectroscopy. Journal of Physical Chemistry A, 1997, 101, 9032-9041.	1.1	100
207	Terahertz Laser Vibrationâ `Rotation Tunneling Spectroscopy of the Water Tetramer. Journal of Physical Chemistry A, 1997, 101, 9022-9031.	1.1	110
208	Far infrared VRT spectroscopy of two water trimer isotopomers vibrationally averaged structures and rearrangement dynamics. Molecular Physics, 1996, 89, 1373-1396.	0.8	21
209	A long path length pulsed slit valve appropriate for high temperature operation: Infrared spectroscopy of jetâ€cooled large water clusters and nucleotide bases. Review of Scientific Instruments, 1996, 67, 410-416.	0.6	83
210	Infrared laser spectroscopy of uracil in a pulsed slit jet. Journal of Chemical Physics, 1995, 103, 9502-9505.	1.2	49
211	Microwave spectroscopy and interaction potential of the longâ€range He…Ar+ion. Journal of Chemical Physics, 1995, 102, 2379-2403.	1.2	69
212	Nuclear hyperfine structure in the electronic millimetre wave spectrum of H2+. Chemical Physics Letters, 1993, 206, 77-82.	1.2	20
213	Near-dissociation microwave spectra of rare-gas diatomic ions. Chemical Physics Letters, 1993, 212, 473-479.	1.2	17
214	Microwave electronic spectroscopy, electric field dissociation and photofragmentation of the H + 2 ion. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 603.	1.7	32
215	Spectroscopy of HD+ in high angular momentum states. Chemical Physics, 1992, 166, 145-166.	0.9	14
216	Bioinformatic Approaches to Processing and Annotation of High-Resolution Mass Spectrometry Data. , 0, , 159-173.		0

13