Mark R Viant

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/430007/publications.pdf

Version: 2024-02-01

216 papers

17,915 citations

68 h-index 126 g-index

226 all docs

226 docs citations

226 times ranked 21152 citing authors

#	Article	IF	CITATIONS
1	Proposed minimum reporting standards for chemical analysis. Metabolomics, 2007, 3, 211-221.	1.4	3,589
2	Environmental metabolomics: a critical review and future perspectives. Metabolomics, 2009, 5, 3-21.	1.4	656
3	High-throughput tissue extraction protocol for NMR- and MS-based metabolomics. Analytical Biochemistry, 2008, 372, 204-212.	1.1	551
4	Mass appeal: metabolite identification in mass spectrometry-focused untargeted metabolomics. Metabolomics, 2013, 9, 44-66.	1.4	452
5	NMR-Based Metabolomics:Â A Powerful Approach for Characterizing the Effects of Environmental Stressors on Organism Health. Environmental Science & Environmental & Env	4.6	406
6	Evaluation of metabolite extraction strategies from tissue samples using NMR metabolomics. Metabolomics, 2007, 3, 55-67.	1.4	345
7	The role of reporting standards for metabolite annotation and identification in metabolomic studies. GigaScience, 2013, 2, 13.	3.3	333
8	Improved methods for the acquisition and interpretation of NMR metabolomic data. Biochemical and Biophysical Research Communications, 2003, 310, 943-948.	1.0	293
9	Non-targeted UHPLC-MS metabolomic data processing methods: a comparative investigation of normalisation, missing value imputation, transformation and scaling. Metabolomics, 2016, 12, 93.	1.4	232
10	Fumarate Is Cardioprotective via Activation of the Nrf2 Antioxidant Pathway. Cell Metabolism, 2012, 15, 361-371.	7.2	231
11	How close are we to complete annotation of metabolomes?. Current Opinion in Chemical Biology, 2017, 36, 64-69.	2.8	228
12	Twoâ€dimensional <i>J</i> àêresolved NMR spectroscopy: review of a key methodology in the metabolomics toolbox. Phytochemical Analysis, 2010, 21, 22-32.	1.2	208
13	Aggregation and dispersion of silver nanoparticles in exposure media for aquatic toxicity tests. Journal of Chromatography A, 2011, 1218, 4226-4233.	1.8	192
14	Improved classification accuracy in 1 - and 2 -dimensional NMR metabolomics data using the variance stabilising generalised logarithm transformation. BMC Bioinformatics, 2007, 8, 234.	1.2	188
15	Metabolomics: Methodologies and applications in the environmental sciences. Journal of Pesticide Sciences, 2006, 31, 245-251.	0.8	170
16	Dynamic Range and Mass Accuracy of Wide-Scan Direct Infusion Nanoelectrospray Fourier Transform Ion Cyclotron Resonance Mass Spectrometry-Based Metabolomics Increased by the Spectral Stitching Method. Analytical Chemistry, 2007, 79, 4595-4602.	3.2	170
17	Recent developments in environmental metabolomics. Molecular BioSystems, 2008, 4, 980.	2.9	169
18	Missing values in mass spectrometry based metabolomics: an undervalued step in the data processing pipeline. Metabolomics, 2012, 8, 161-174.	1.4	169

#	Article	IF	Citations
19	Quantitative Lipoprotein Subclass and Low Molecular Weight Metabolite Analysis in Human Serum and Plasma by $<$ sup $>$ 1 $<$ /sup $>$ H NMR Spectroscopy in a Multilaboratory Trial. Analytical Chemistry, 2018, 90, 11962-11971.	3.2	165
20	Optimized metabolite extraction from blood serum for 1H nuclear magnetic resonance spectroscopy. Analytical Biochemistry, 2008, 377, 16-23.	1.1	164
21	Spectral relative standard deviation: a practical benchmark in metabolomics. Analyst, The, 2009, 134, 478-485.	1.7	163
22	The Role of Omics in the Application of Adverse Outcome Pathways for Chemical Risk Assessment. Toxicological Sciences, 2017, 158, 252-262.	1.4	161
23	Identifying Health Impacts of Exposure to Copper Using Transcriptomics and Metabolomics in a Fish Model. Environmental Science & Technology, 2010, 44, 820-826.	4.6	152
24	Metabolomics of aquatic organisms: the new 'omics' on the block. Marine Ecology - Progress Series, 2007, 332, 301-306.	0.9	151
25	The Impact of Inflammation on Metabolomic Profiles in Patients With Arthritis. Arthritis and Rheumatism, 2013, 65, 2015-2023.	6.7	140
26	COordination of Standards in MetabOlomicS (COSMOS): facilitating integrated metabolomics data access. Metabolomics, 2015, 11, 1587-1597.	1.4	140
27	International NMR-Based Environmental Metabolomics Intercomparison Exercise. Environmental Science & Environmental Environmental Science & Environmental	4.6	139
28	Birmingham Metabolite Library: a publicly accessible database of 1-D 1H and 2-D 1H J-resolved NMR spectra of authentic metabolite standards (BML-NMR). Metabolomics, 2012, 8, 8-18.	1.4	137
29	Direct Sampling of Organisms from the Field and Knowledge of their Phenotype:Â Key Recommendations for Environmental Metabolomics. Environmental Science & Environmental Science & 2007, 41, 3375-3381.	4.6	134
30	Direct infusion mass spectrometry metabolomics dataset: a benchmark for data processing and quality control. Scientific Data, 2014, 1, 140012.	2.4	134
31	Metabolic effects of dinoseb, diazinon and esfenvalerate in eyed eggs and alevins of Chinook salmon (Oncorhynchus tshawytscha) determined by 1H NMR metabolomics. Aquatic Toxicology, 2006, 77, 359-371.	1.9	132
32	Use cases, best practice and reporting standards for metabolomics in regulatory toxicology. Nature Communications, 2019, 10, 3041.	5.8	131
33	Mass spectrometry based environmental metabolomics: a primer and review. Metabolomics, 2013, 9, 144-158.	1.4	124
34	Characterising and correcting batch variation in an automated direct infusion mass spectrometry (DIMS) metabolomics workflow. Analytical and Bioanalytical Chemistry, 2013, 405, 5147-5157.	1.9	123
35	A complete workflow for high-resolution spectral-stitching nanoelectrospray direct-infusion mass-spectrometry-based metabolomics and lipidomics. Nature Protocols, 2017, 12, 310-328.	5.5	121
36	A new approach to toxicity testing in Daphnia magna: application of high throughput FT-ICR mass spectrometry metabolomics. Metabolomics, 2009, 5, 44-58.	1.4	118

#	Article	IF	CITATIONS
37	Metabolomics and proteomics reveal impacts of chemically mediated competition on marine plankton. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9009-9014.	3.3	112
38	Terahertz Laser Vibrationâ^Rotation Tunneling Spectroscopy of the Water Tetramer. Journal of Physical Chemistry A, 1997, 101, 9022-9031.	1.1	110
39	Discrimination Models Using Variance-Stabilizing Transformation of Metabolomic NMR Data. OMICS A Journal of Integrative Biology, 2004, 8, 118-130.	1.0	106
40	NMRâ€based metabolomic analysis of cerebrospinal fluid and serum in neurological diseases – a diagnostic tool?. NMR in Biomedicine, 2010, 23, 123-132.	1.6	105
41	Correlation between heat-shock protein induction and reduced metabolic condition in juvenile steelhead trout (Oncorhynchus mykiss) chronically exposed to elevated temperature. Fish Physiology and Biochemistry, 2003, 29, 159-171.	0.9	104
42	Characterization of Isotopic Abundance Measurements in High Resolution FT-ICR and Orbitrap Mass Spectra for Improved Confidence of Metabolite Identification. Analytical Chemistry, 2011, 83, 3737-3743.	3.2	102
43	Toxic actions of dinoseb in medaka (Oryzias latipes) embryos as determined by in vivo 31P NMR, HPLC-UV and 1H NMR metabolomics. Aquatic Toxicology, 2006, 76, 329-342.	1.9	101
44	Metabolomic Profiling of Drug Responses in Acute Myeloid Leukaemia Cell Lines. PLoS ONE, 2009, 4, e4251.	1.1	101
45	Pseudorotation in Water Trimer Isotopomers Using Terahertz Laser Spectroscopy. Journal of Physical Chemistry A, 1997, 101, 9032-9041.	1.1	100
46	Wolbachia Modulates Lipid Metabolism in Aedes albopictus Mosquito Cells. Applied and Environmental Microbiology, 2016, 82, 3109-3120.	1.4	100
47	Data standards can boost metabolomics research, and if there is a will, there is a way. Metabolomics, 2016, 12, 14.	1.4	97
48	An NMR metabolomic investigation of early metabolic disturbances following traumatic brain injury in a mammalian model. NMR in Biomedicine, 2005, 18, 507-516.	1.6	94
49	Standard reporting requirements for biological samples in metabolomics experiments: environmental context. Metabolomics, 2007, 3, 203-210.	1.4	93
50	<sup $>$ 1 $<$ /sup $>$ H NMR Metabolomics Reveals Contrasting Response by Male and Female Mussels Exposed to Reduced Seawater pH, Increased Temperature, and a Pathogen. Environmental Science & Emp; Technology, 2014, 48, 7044-7052.	4.6	91
51	NMR-derived developmental metabolic trajectories: an approach for visualizing the toxic actions of trichloroethylene during embryogenesis. Metabolomics, 2005, 1, 149-158.	1.4	88
52	Structure and function of BamE within the outer membrane and the βâ€barrel assembly machine. EMBO Reports, 2011, 12, 123-128.	2.0	88
53	Anaerobic Metabolism at Thermal Extremes: A Metabolomic Test of the Oxygen Limitation Hypothesis in an Aquatic Insect. Integrative and Comparative Biology, 2013, 53, 609-619.	0.9	86
54	A long path length pulsed slit valve appropriate for high temperature operation: Infrared spectroscopy of jetâ€cooled large water clusters and nucleotide bases. Review of Scientific Instruments, 1996, 67, 410-416.	0.6	83

#	Article	IF	CITATIONS
55	Fast targeted multidimensional NMR metabolomics of colorectal cancer. Magnetic Resonance in Chemistry, 2009, 47, S68-73.	1.1	83
56	Metabolomics of Microliter Hemolymph Samples Enables an Improved Understanding of the Combined Metabolic and Transcriptional Responses of <i>Daphnia magna</i> to Cadmium. Environmental Science & Eamp; Technology, 2011, 45, 3710-3717.	4.6	83
57	Towards a System Level Understanding of Non-Model Organisms Sampled from the Environment: A Network Biology Approach. PLoS Computational Biology, 2011, 7, e1002126.	1.5	83
58	Liver Tumors in Wild Flatfish: A Histopathological, Proteomic, and Metabolomic Study. OMICS A Journal of Integrative Biology, 2005, 9, 281-299.	1.0	82
59	Biodiversity in marine invertebrate responses to acute warming revealed by a comparative multiâ€omics approach. Global Change Biology, 2017, 23, 318-330.	4.2	80
60	MI-Pack: Increased confidence of metabolite identification in mass spectra by integrating accurate masses and metabolic pathways. Chemometrics and Intelligent Laboratory Systems, 2010, 104, 75-82.	1.8	78
61	Galaxy-M: a Galaxy workflow for processing and analyzing direct infusion and liquid chromatography mass spectrometry-based metabolomics data. GigaScience, 2016, 5, 10.	3.3	78
62	Regional adaptation defines sensitivity to future ocean acidification. Nature Communications, 2017, 8, 13994.	5.8	78
63	Comparison of modified Matyash method to conventional solvent systems for polar metabolite and lipid extractions. Analytica Chimica Acta, 2018, 1037, 301-315.	2.6	75
64	Discovery of Metabolic Signatures for Predicting Whole Organism Toxicology. Toxicological Sciences, 2010, 115, 369-378.	1.4	74
65	Characterizing the metabolic actions of natural stresses in the California red abalone, Haliotis rufescens using 1H NMR metabolomics. Metabolomics, 2005, 1, 199-209.	1.4	73
66	Revealing the Metabolome of Animal Tissues Using 1H Nuclear Magnetic Resonance Spectroscopy. Methods in Molecular Biology, 2007, 358, 229-246.	0.4	73
67	Hepatic Transcriptomic and Metabolomic Responses in the Stickleback (<i>Gasterosteus aculeatus</i> Exposed to Environmentally Relevant Concentrations of Dibenzanthracene. Environmental Science & Environmental & Environmenta	4.6	71
68	Hepatic transcriptomic and metabolomic responses in the Stickleback (Gasterosteus aculeatus) exposed to ethinyl-estradiol. Aquatic Toxicology, 2010, 97, 174-187.	1.9	71
69	Molecular toxicity of cerium oxide nanoparticles to the freshwater alga <i>Chlamydomonas reinhardtii</i> is associated with supra-environmental exposure concentrations. Nanotoxicology, 2016, 10, 1-10.	1.6	70
70	Microwave spectroscopy and interaction potential of the longâ€range HeAr+ion. Journal of Chemical Physics, 1995, 102, 2379-2403.	1.2	69
71	Computational tools and workflows in metabolomics: An international survey highlights the opportunity for harmonisation through Galaxy. Metabolomics, 2017, 13, 12.	1.4	69
72	Metabolomics Reveals Target and Off-Target Toxicities of a Model Organophosphate Pesticide to Roach (Rutilus rutilus): Implications for Biomonitoring. Environmental Science &	4.6	68

#	Article	IF	Citations
73	Discriminating between Different Acute Chemical Toxicities via Changes in the Daphnid Metabolome. Toxicological Sciences, 2010, 118, 307-317.	1.4	67
74	International Ring Trial of a High Resolution Targeted Metabolomics and Lipidomics Platform for Serum and Plasma Analysis. Analytical Chemistry, 2019, 91, 14407-14416.	3.2	66
75	Comparison of histological, genetic, metabolomics, and lipid-based methods for sex determination in marine mussels. Analytical Biochemistry, 2007, 369, 175-186.	1.1	65
76	A signal filtering method for improved quantification and noise discrimination in fourier transform ion cyclotron resonance mass spectrometry-based metabolomics data. Journal of the American Society for Mass Spectrometry, 2009, 20, 1087-1095.	1.2	65
77	Improved identification of metabolites in complex mixtures using HSQC NMR spectroscopy. Analytica Chimica Acta, 2008, 614, 127-133.	2.6	64
78	Combined Bezafibrate and Medroxyprogesterone Acetate: Potential Novel Therapy for Acute Myeloid Leukaemia. PLoS ONE, 2009, 4, e8147.	1.1	63
79	The Time Is Right to Focus on Model Organism Metabolomes. Metabolites, 2016, 6, 8.	1.3	63
80	Metabolic Changes in Flatfish Hepatic Tumours Revealed by NMR-Based Metabolomics and Metabolic Correlation Networks. Journal of Proteome Research, 2008, 7, 5277-5285.	1.8	60
81	PhenoMeNal: processing and analysis of metabolomics data in the cloud. GigaScience, 2019, 8, .	3.3	60
82	Exo-Metabolome of Pseudovibrio sp. FO-BEG1 Analyzed by Ultra-High Resolution Mass Spectrometry and the Effect of Phosphate Limitation. PLoS ONE, 2014, 9, e96038.	1.1	57
83	Proton NMR-Based Metabolite Analyses of Archived Serial Paired Serum and Urine Samples from Myeloma Patients at Different Stages of Disease Activity Identifies Acetylcarnitine as a Novel Marker of Active Disease. PLoS ONE, 2013, 8, e56422.	1.1	56
84	Quantitative characterization of the (D2O)3 torsional manifold by terahertz laser spectroscopy and theoretical analysis. Journal of Chemical Physics, 1999, 110, 4369-4381.	1.2	53
85	Sublethal actions of copper in abalone (Haliotis rufescens) as characterized by in vivo 31P NMR. Aquatic Toxicology, 2002, 57, 139-151.	1.9	53
86	Quality assurance and quality control processes: summary of a metabolomics community questionnaire. Metabolomics, 2017, 13, 1.	1.4	53
87	Metabolomics standards initiative: ontology working group work in progress. Metabolomics, 2007, 3, 249-256.	1.4	52
88	Investigation of Terahertz Vibration–Rotation Tunneling Spectra for the Water Octamer. Journal of Physical Chemistry A, 2013, 117, 6960-6966.	1.1	52
89	The metabolic response of marine copepods to environmental warming and ocean acidification in the absence of food. Scientific Reports, 2015, 5, 13690.	1.6	50
90	nmrML: A Community Supported Open Data Standard for the Description, Storage, and Exchange of NMR Data. Analytical Chemistry, 2018, 90, 649-656.	3.2	50

#	Article	IF	CITATIONS
91	Infrared laser spectroscopy of uracil in a pulsed slit jet. Journal of Chemical Physics, 1995, 103, 9502-9505.	1.2	49
92	Quantitative characterization of the water trimer torsional manifold by terahertz laser spectroscopy and theoretical analysis. II. (H2O)3. Journal of Chemical Physics, 1999, 111, 7789-7800.	1.2	49
93	Proposed reporting requirements for the description of NMR-based metabolomics experiments. Metabolomics, 2007, 3, 223-229.	1.4	49
94	Automated screening for metabolites in complex mixtures using 2D COSY NMR spectroscopy. Metabolomics, 2006, 2, 221-233.	1.4	48
95	Toxicological effect of single contaminants and contaminant mixtures associated with plant ingredients in novel salmon feeds. Food and Chemical Toxicology, 2014, 73, 157-174.	1.8	48
96	Drug Redeployment to Kill Leukemia and Lymphoma Cells by Disrupting SCD1-Mediated Synthesis of Monounsaturated Fatty Acids. Cancer Research, 2015, 75, 2530-2540.	0.4	48
97	Protein Corona Modulates Uptake and Toxicity of Nanoceria <i>via</i> Clathrin-Mediated Endocytosis. Biological Bulletin, 2016, 231, 40-60.	0.7	48
98	Biomarkers of Whale Shark Health: A Metabolomic Approach. PLoS ONE, 2012, 7, e49379.	1.1	47
99	Progress towards an OECD reporting framework for transcriptomics and metabolomics in regulatory toxicology. Regulatory Toxicology and Pharmacology, 2021, 125, 105020.	1.3	46
100	Applications of metabolomics to the environmental sciences. Metabolomics, 2009, 5, 1-2.	1.4	44
101	Characterization of the metabolic actions of crude versus dispersed oil in salmon smolts via NMR-based metabolomics. Aquatic Toxicology, 2009, 95, 230-238.	1.9	44
102	Hydrogen Bond Breaking Dynamics of the Water Trimer in the Translational and Librational Band Region of Liquid Water. Journal of the American Chemical Society, 2001, 123, 5938-5941.	6.6	42
103	Validation of a urine metabolome fingerprint in dog for phenotypic classification. Metabolomics, 2007, 3, 453-463.	1.4	40
104	The critical importance of defined media conditions in Daphnia magna nanotoxicity studies. Toxicology Letters, 2013, 223, 103-108.	0.4	40
105	msPurity: Automated Evaluation of Precursor Ion Purity for Mass Spectrometry-Based Fragmentation in Metabolomics. Analytical Chemistry, 2017, 89, 2432-2439.	3.2	40
106	Application of Metabolomics to Investigate the Process of Human Orthotopic Liver Transplantation: A Proof-of-Principle Study. OMICS A Journal of Integrative Biology, 2010, 14, 143-150.	1.0	39
107	Optimized method for the determination of phosphoarginine in abalone tissue by high-performance liquid chromatography. Biomedical Applications, 2001, 765, 107-111.	1.7	38
108	Comparative Sublethal Actions of 3-Trifluoromethyl-4-nitrophenol in Marine Molluscs as Measured by in Vivo31P NMR. Pesticide Biochemistry and Physiology, 2001, 71, 40-47.	1.6	37

#	Article	IF	Citations
109	Water Pentamer:  Characterization of the Torsional-Puckering Manifold by Terahertz VRT Spectroscopy. Journal of Physical Chemistry A, 2005, 109, 6483-6497.	1.1	37
110	Effects of Temperature on Hostâ 'Pathogenâ 'Drug Interactions in Red Abalone, Haliotis rufescens, Determined by 1H NMR Metabolomics. Environmental Science & Environmental Science & 2006, 40, 7077-7084.	4.6	37
111	Metabolomics Discovers Early-Response Metabolic Biomarkers that Can Predict Chronic Reproductive Fitness in Individual Daphnia magna. Metabolites, 2018, 8, 42.	1.3	37
112	HAMMER: automated operation of mass frontier to construct <i>in silico</i> mass spectral fragmentation libraries. Bioinformatics, 2014, 30, 581-583.	1.8	36
113	Metabolomics reveals an involvement of pantothenate for male production responding to the short-day stimulus in the water flea, Daphnia pulex. Scientific Reports, 2016, 6, 25125.	1.6	36
114	Metabolic responses produced by crude versus dispersed oil in Chinook salmon pre-smolts via NMR-based metabolomics. Ecotoxicology and Environmental Safety, 2010, 73, 710-717.	2.9	35
115	Far-infrared laser vibration–rotation–tunneling spectroscopy of water clusters in the librational band region of liquid water. Journal of Chemical Physics, 2001, 114, 4005-4015.	1.2	34
116	MaConDa: a publicly accessible mass spectrometry contaminants database. Bioinformatics, 2012, 28, 2856-2857.	1.8	34
117	Analysis of time course ¹ H NMR metabolomics data by multivariate curve resolution. Magnetic Resonance in Chemistry, 2009, 47, S105-17.	1.1	33
118	Vision of a near future: Bridging the human health–environment divide. Toward an integrated strategy to understand mechanisms across species for chemical safety assessment. Toxicology in Vitro, 2020, 62, 104692.	1.1	33
119	New ideas for non-animal approaches to predict repeated-dose systemic toxicity: Report from an EPAA Blue Sky Workshop. Regulatory Toxicology and Pharmacology, 2020, 114, 104668.	1.3	33
120	Microwave electronic spectroscopy, electric field dissociation and photofragmentation of the H \pm 2 ion. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 603.	1.7	32
121	Robust twin boosting for feature selection from high-dimensional omics data with label noise. Information Sciences, 2015, 291, 1-18.	4.0	32
122	Metabolic changes in Japanese medaka (Oryzias latipes) during embryogenesis and hypoxia as determined by in vivo 31P NMR. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2005, 140, 103-113.	1.3	31
123	Hypoxia Triggers Major Metabolic Changes in AML Cells without Altering Indomethacin-Induced TCA Cycle Deregulation. ACS Chemical Biology, 2011, 6, 169-175.	1.6	31
124	Lineâ€shape analysis of <i>J</i> à€resolved NMR spectra: application to metabolomics and quantification of intensity errors from signal processing and high signal congestion. Magnetic Resonance in Chemistry, 2009, 47, S86-95.	1.1	30
125	Effects of the application of different window functions and projection methods on processing of 1H J-resolved nuclear magnetic resonance spectra for metabolomics. Analytica Chimica Acta, 2008, 610, 80-88.	2.6	29
126	Distinguishing between the metabolome and xenobiotic exposome in environmental field samples analysed by direct-infusion mass spectrometry based metabolomics and lipidomics. Metabolomics, 2014, 10, 1050-1058.	1.4	29

#	Article	IF	CITATIONS
127	Predicting chronic copper and nickel reproductive toxicity to Daphnia pulex-pulicaria from whole-animal metabolic profiles. Environmental Pollution, 2016, 212, 325-329.	3.7	29
128	Molecular responses of European flounder (Platichthys flesus) chronically exposed to contaminated estuarine sediments. Chemosphere, 2014, 108, 152-158.	4.2	28
129	Far-infrared VRT spectroscopy of the water dimer: Characterization of the 20 \hat{l} 4m out-of-plane librational vibration. Journal of Chemical Physics, 2015, 143, 154306.	1.2	28
130	Systems Biology Approach Reveals a Calcium-Dependent Mechanism for Basal Toxicity in <i>Daphnia magna</i> . Environmental Science & Environmental Scien	4.6	28
131	Using community metabolomics as a new approach to discriminate marine microbial particulate organic matter in the western English Channel. Progress in Oceanography, 2015, 137, 421-433.	1.5	27
132	High-resolution mass spectrometry provides novel insights into products of human metabolism of organophosphate and brominated flame retardants. Analytical and Bioanalytical Chemistry, 2015, 407, 1871-1883.	1.9	27
133	Multi-omics approaches confirm metal ions mediate the main toxicological pathways of metal-bearing nanoparticles in lung epithelial A549 cells. Environmental Science: Nano, 2018, 5, 1506-1517.	2.2	27
134	Pulmonary toxicity of inhaled nano-sized cerium oxide aerosols in Sprague–Dawley rats. Nanotoxicology, 2019, 13, 733-750.	1.6	27
135	Optimisation of DNA extraction from the crustacean <i>Daphnia</i> . PeerJ, 2016, 4, e2004.	0.9	26
136	Use of 5-azacytidine in a proof-of-concept study to evaluate the impact of pre-natal and post-natal exposures, as well as within generation persistent DNA methylation changes in Daphnia. Ecotoxicology, 2018, 27, 556-568.	1.1	26
137	Oral Estrogen Masculinizes Female Zebra Finch Song System. Hormones and Behavior, 2002, 41, 236-241.	1.0	25
138	Disruption of DNA Methylation via <i>S</i> -Adenosylhomocysteine Is a Key Process in High Incidence Liver Carcinogenesis in Fish. Journal of Proteome Research, 2013, 12, 2895-2904.	1.8	25
139	Statistical Correlations between NMR Spectroscopy and Direct Infusion FT-ICR Mass Spectrometry Aid Annotation of Unknowns in Metabolomics. Analytical Chemistry, 2016, 88, 2583-2589.	3.2	25
140	Metabolomic method to detect a metabolite corona on amino-functionalized polystyrene nanoparticles. Nanotoxicology, 2019, 13, 783-794.	1.6	24
141	Utilizing in vivo nuclear magnetic resonance spectroscopy to study sublethal stress in aquatic organisms. Marine Environmental Research, 2002, 54, 553-557.	1.1	23
142	Far infrared VRT spectroscopy of two water trimer isotopomers vibrationally averaged structures and rearrangement dynamics. Molecular Physics, 1996, 89, 1373-1396.	0.8	21
143	Cellular responses to temperature stress in steelhead trout (Onchorynchus mykiss) parr with different rearing histories. Fish Physiology and Biochemistry, 2006, 32, 261-273.	0.9	21
144	Environmental Metabolomics Using 9 $^{1}\$ H-NMR Spectroscopy. Methods in Molecular Biology, 2005, 410, 137-150.	0.4	21

#	Article	IF	Citations
145	Nuclear hyperfine structure in the electronic millimetre wave spectrum of H2+. Chemical Physics Letters, 1993, 206, 77-82.	1.2	20
146	Omega-3 and alpha-tocopherol provide more protection against contaminants in novel feeds for Atlantic salmon (Salmo salar L.) than omega-6 and gamma tocopherol. Toxicology Reports, 2016, 3, 211-224.	1.6	20
147	Miniaturising acute toxicity and feeding rate measurements in Daphnia magna. Ecotoxicology and Environmental Safety, 2017, 139, 352-357.	2.9	20
148	Developmental rates, structural asymmetry, and metabolic fingerprints of steelhead trout (Oncorhynchus mykiss) eggs incubated at two temperatures. Fish Physiology and Biochemistry, 2007, 33, 59-72.	0.9	19
149	Metabolomics confirms that dissolved organic carbon mitigates copper toxicity. Environmental Toxicology and Chemistry, 2016, 35, 635-644.	2.2	19
150	The future of metabolomics in ELIXIR. F1000Research, 2017, 6, 1649.	0.8	19
151	Terahertz laser vibration–rotation–tunneling spectrum of the water pentamer–d10 Chemical Physics Letters, 1998, 292, 667-676.	1.2	18
152	An avian bioassay for environmental estrogens: The growth response of zebra finch (<i>Taeniopygia) Tj ETQq0 C</i>	0 0 rgBT /C 2.2	Overlock 10 Tf 18
153	Near-dissociation microwave spectra of rare-gas diatomic ions. Chemical Physics Letters, 1993, 212, 473-479.	1.2	17
154	A Stable-Isotope Mass Spectrometry-Based Metabolic Footprinting Approach to Analyze Exudates from Phytoplankton. Marine Drugs, 2013, 11, 4158-4175.	2.2	17
155	MUSCLE: automated multi-objective evolutionary optimization of targeted LC-MS/MS analysis. Bioinformatics, 2015, 31, 975-977.	1.8	17
156	Confidence in metabolite identification dictates the applicability of metabolomics to regulatory toxicology. Current Opinion in Toxicology, 2019, 16, 32-38.	2.6	17
157	Mass Spectrometry Based Metabolomics Comparison of Liver Grafts from Donors after Circulatory Death (DCD) and Donors after Brain Death (DBD) Used in Human Orthotopic Liver Transplantation. PLoS ONE, 2016, 11, e0165884.	1.1	17
158	Transcriptomic and metabolomic approaches to investigate the molecular responses of human cell lines exposed to the flame retardant hexabromocyclododecane (HBCD). Toxicology in Vitro, 2015, 29, 2116-2123.	1.1	15
159	Hydrogen bond breaking dynamics in the water pentamer: Terahertz VRT spectroscopy of a 20 <i>\hat{l}^4</i> m libration. Journal of Chemical Physics, 2017, 146, 014306.	1.2	15
160	Integrating in vitro metabolomics with a 96-well high-throughput screening platform. Metabolomics, 2022, 18, 11.	1.4	15
161	Spectroscopy of HD+ in high angular momentum states. Chemical Physics, 1992, 166, 145-166.	0.9	14
162	CASMIâ€"The Small Molecule Identification Process from a Birmingham Perspective. Metabolites, 2013, 3, 397-411.	1.3	13

#	Article	IF	CITATIONS
163	The New Data Quality Task Group (DQTG): ensuring high quality data today and in the future. Metabolomics, 2014, 10, 539-540.	1.4	13
164	Embedding standards in metabolomics: the Metabolomics Society data standards task group. Metabolomics, 2015, 11, 782-783.	1.4	13
165	Gene expression and metabolic responses of HepG2/C3A cells exposed to flame retardants and dust extracts at concentrations relevant to indoor environmental exposures. Chemosphere, 2016, 144, 1996-2003.	4.2	13
166	Environmentally Relevant Iron Oxide Nanoparticles Produce Limited Acute Pulmonary Effects in Rats at Realistic Exposure Levels. International Journal of Molecular Sciences, 2021, 22, 556.	1.8	13
167	Regulation of brain-derived neurotrophic factor messenger RNA levels in avian hypothalamic slice cultures. Neuroscience, 2000, 99, 373-380.	1.1	12
168	mzML2ISA & amp; nmrML2ISA: generating enriched ISA-Tab metadata files from metabolomics XML data. Bioinformatics, 2017, 33, 2598-2600.	1.8	12
169	Aromatic metabolites from the coelomic fluid of Eisenia earthworm species. European Journal of Soil Biology, 2017, 78, 17-19.	1.4	12
170	How omics technologies can enhance chemical safety regulation: perspectives from academia, government, and industry. Environmental Toxicology and Chemistry, 2018, 37, 1252-1259.	2.2	12
171	Microbiome function predicts amphibian chytridiomycosis disease dynamics. Microbiome, 2022, 10, 44.	4.9	12
172	Training needs in metabolomics. Metabolomics, 2015, 11, 784-786.	1.4	11
173	Acoustic Mist Ionization Mass Spectrometry for Ultrahigh-Throughput Metabolomics Screening. Analytical Chemistry, 2021, 93, 9258-9266.	3.2	11
174	The future of metabolomics in ELIXIR. F1000Research, 2017, 6, 1649.	0.8	11
175	An integrated host-microbiome response to atrazine exposure mediates toxicity in Drosophila. Communications Biology, 2021, 4, 1324.	2.0	10
176	Automated assembly of species metabolomes through data submission into a public repository. GigaScience, 2017, 6, 1-4.	3.3	9
177	Defining the Baseline and Oxidant Perturbed Lipidomic Profiles of Daphnia magna. Metabolites, 2017, 7, 11.	1.3	9
178	Terahertz VRT spectroscopy of the water hexamer-d12 prism: Dramatic enhancement of bifurcation tunneling upon librational excitation. Journal of Chemical Physics, 2018, 148, .	1.2	9
179	Energy Starvation in Daphnia magna from Exposure to a Lithium Cobalt Oxide Nanomaterial. Chemical Research in Toxicology, 2021, 34, 2287-2297.	1.7	9
180	Automated development of an LC-MS/MS method for measuring multiple vitamin D metabolites using MUSCLE software. Analytical Methods, 2017, 9, 2723-2731.	1.3	8

#	Article	IF	CITATIONS
181	Multiple metabolic pathways are predictive of ricin intoxication in a rat model. Metabolomics, 2019, 15, 102.	1.4	8
182	Toxicokinetics and biotransformation of p-nitrophenol in red abalone (Haliotis rufescens). Aquatic Toxicology, 2003, 62, 329-336.	1.9	7
183	Influence of organic carbon on reductive dechlorination of thiobencarb in California rice field soils. Pest Management Science, 2005, 61, 68-74.	1.7	7
184	Profiling MS proteomics data using smoothed nonâ€linear energy operator and Bayesian additive regression trees. Proteomics, 2009, 9, 4176-4191.	1.3	7
185	Knowledge-Driven Approaches to Create the MTox700+ Metabolite Panel for Predicting Toxicity. Toxicological Sciences, 2022, 186, 208-220.	1.4	7
186	The effect of perhexiline on myocardial protection during coronary artery surgery: a two-centre, randomized, double-blind, placebo-controlled trial. European Journal of Cardio-thoracic Surgery, 2015, 47, 464-472.	0.6	6
187	Defensive and adverse energyâ€related molecular responses precede tris (1, 3â€dichloroâ€2â€propyl) phosphate cytotoxicity. Journal of Applied Toxicology, 2016, 36, 649-658.	1.4	6
188	Terahertz VRT Spectroscopy of the Water Hexamer-h12 Cage: Dramatic Libration-Induced Enhancement of Hydrogen Bond Tunneling Dynamics. Journal of Physical Chemistry A, 2018, 122, 7421-7426.	1.1	6
189	Species-Specific Variations in the Metabolomic Profiles of Acropora hyacinthus and Acropora millepora Mask Acute Temperature Stress Effects in Adult Coral Colonies. Frontiers in Marine Science, 2021, 8, .	1.2	6
190	Resurrecting the metabolome: Rapid evolution magnifies the metabolomic plasticity to predation in a natural <i>Daphnia</i> population. Molecular Ecology, 2021, 30, 2285-2297.	2.0	6
191	Automated Sample Preparation and Data Collection Workflow for High-Throughput In Vitro Metabolomics. Metabolites, 2022, 12, 52.	1.3	6
192	Linked Metabolites: A tool for the construction of directed metabolic graphs. Computers in Biology and Medicine, 2010, 40, 340-349.	3.9	4
193	Application of Passive Sampling to Characterise the Fish Exometabolome. Metabolites, 2017, 7, 8.	1.3	4
194	Improved Algal Toxicity Test System for Robust Omics-Driven Mode-of-Action Discovery in Chlamydomonas reinhardtii. Metabolites, 2019, 9, 94.	1.3	4
195	Characterisation of the dynamic nature of lipids throughout the lifespan of genetically identical female and male Daphnia magna. Scientific Reports, 2020, 10, 5576.	1.6	4
196	An avian bioassay for environmental estrogens: the growth response of zebra finch (Taeniopygia) Tj ETQq0 0 () rgB <u>T /O</u> ver	lock 10 Tf 50 1
197	Modeling the metabolic profile of Mytilus edulis reveals molecular signatures linked to gonadal development, sex and environmental site. Scientific Reports, 2021, 11, 12882.	1.6	3
198	Spatially Mapping the Baseline and Bisphenol-A Exposed Daphnia magna Lipidome Using Desorption Electrospray Ionization—Mass Spectrometry. Metabolites, 2022, 12, 33.	1.3	3

#	Article	IF	CITATIONS
199	Variance stabilising transformations for NMR metabolomics data. BMC Systems Biology, 2007, 1, .	3.0	2
200	Supporting the industry sector of the metabolomics community: the remit of the Metabolomics Society's Industry Engagement Task Group. Metabolomics, 2014, 10, 541-542.	1.4	2
201	Space and patchiness affects diversity–function relationships in fungal decay communities. ISME Journal, 2021, 15, 720-731.	4.4	2
202	An Extensive Metabolomics Workflow to Discover Cardiotoxin-Induced Molecular Perturbations in Microtissues. Metabolites, 2021, 11, 644.	1.3	2
203	AN AVIAN BIOASSAY FOR ENVIRONMENTAL ESTROGENS: THE GROWTH RESPONSE OF ZEBRA FINCH (TAENIOPYGIA GUTTATA) CHICK OVIDUCT TO ORAL ESTROGENS. Environmental Toxicology and Chemistry, 2002, 21, 2663.	2.2	2
204	Characterization of California Rice Field Soils Susceptible to Delayed Phytotoxicity Syndrome. Bulletin of Environmental Contamination and Toxicology, 2004, 73, 448-56.	1.3	1
205	Effect of perhexiline on myocardial protection during coronary artery surgery: a two-centre randomised double-blind placebo-controlled trial. Lancet, The, 2013, 381, S36.	6.3	1
206	Databases and Standardisation of Reporting Methods for Metabolic Studies., 2007,, 227-239.		0
207	Approaches to interpretation of  Omics data: Identification of responses in European Flounder populations sampled from sites with different levels of environmental pollutants. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2010, 157, S3.	0.8	0
208	Bioinformatic Approaches to Processing and Annotation of High-Resolution Mass Spectrometry Data. , 0, , 159-173.		0
209	New web forum for Metabolomics Society's interest groups. Metabolomics, 2012, 8, 367-367.	1.4	0
210	The year in review: highlights of the Metabolomics Society in 2013. Metabolomics, 2013, 9, 1129-1131.	1.4	0
211	The year in review: highlights of the Metabolomics Society in 2014. Metabolomics, 2014, 10, 1043-1044.	1.4	0
212	Toxicological effect of single contaminants and contaminant mixtures associated with plant ingredients in novel salmon feeds. Toxicology Letters, 2014, 229, S212-S213.	0.4	0
213	Modulation of the epigenome in fish carcinogenesis. Toxicology Letters, 2014, 229, S17.	0.4	0
214	"Omics" Approaches in the Context of Environmental Toxicology. , 2006, , 1-31.		0
215	Heuristic Search for 2D NMR Alignment to Support Metabolite Identification. Lecture Notes in Computer Science, 2007, , 447-458.	1.0	0
216	The metabolic response of marine copepods (Calanus spp.) to food deprivation, end-of-century ocean acidification, and global warming scenarios. , 2022, , 153-166.		0