Heung Kyu Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4299961/publications.pdf

Version: 2024-02-01

78 papers

9,080 citations

32 h-index 74 g-index

81 all docs 81 docs citations

81 times ranked 18157 citing authors

#	Article	IF	CITATIONS
1	Current Understanding of Hypoxia in Glioblastoma Multiforme and Its Response to Immunotherapy. Cancers, 2022, 14, 1176.	3.7	28
2	The Role of Autophagy in the Function of CD4+ T Cells and the Development of Chronic Inflammatory Diseases. Frontiers in Pharmacology, 2022, 13, 860146.	3.5	9
3	$\hat{I}^{3}\hat{I}^{\prime}$ T Cells in Brain Homeostasis and Diseases. Frontiers in Immunology, 2022, $13,.$	4.8	8
4	Dendritic Cell-Based Immunotherapy in Hot and Cold Tumors. International Journal of Molecular Sciences, 2022, 23, 7325.	4.1	7
5	Autophagic protein ATG5 controls antiviral immunity via glycolytic reprogramming of dendritic cells against respiratory syncytial virus infection. Autophagy, 2021, 17, 2111-2127.	9.1	17
6	The role of dendritic cells in tumor microenvironments and their uses as therapeutic targets. BMB Reports, 2021, 54, 31-43.	2.4	33
7	Abstract PO013: The mechanism of $\hat{l}^3\hat{l}^\prime$ T cell-mediated antitumor immunity in Glioblasotma multiforme. , 2021, , .		0
8	Tumor hypoxia represses γδT cell-mediated antitumor immunity against brain tumors. Nature Immunology, 2021, 22, 336-346.	14.5	70
9	Function of Î ³ δT cells in tumor immunology and their application to cancer therapy. Experimental and Molecular Medicine, 2021, 53, 318-327.	7.7	95
_			
10	Delivery Routes for COVID-19 Vaccines. Vaccines, 2021, 9, 524.	4.4	37
10	Delivery Routes for COVID-19 Vaccines. Vaccines, 2021, 9, 524. Immune Networks in Health and Disease. Molecules and Cells, 2021, 44, 279-280.	2.6	37
11	Immune Networks in Health and Disease. Molecules and Cells, 2021, 44, 279-280. The Role of Gut Microbiota in Modulating Tumor Growth and Anticancer Agent Efficacy. Molecules	2.6	0
11 12	Immune Networks in Health and Disease. Molecules and Cells, 2021, 44, 279-280. The Role of Gut Microbiota in Modulating Tumor Growth and Anticancer Agent Efficacy. Molecules and Cells, 2021, 44, 356-362. Monocytes Contribute to IFN-β Production via the MyD88-Dependent Pathway and Cytotoxic T-Cell	2.6	10
11 12 13	Immune Networks in Health and Disease. Molecules and Cells, 2021, 44, 279-280. The Role of Gut Microbiota in Modulating Tumor Growth and Anticancer Agent Efficacy. Molecules and Cells, 2021, 44, 356-362. Monocytes Contribute to IFN-β Production via the MyD88-Dependent Pathway and Cytotoxic T-Cell Responses against Mucosal Respiratory Syncytial Virus Infection. Immune Network, 2021, 21, e27. Single Cell Transcriptomic Re-analysis of Immune Cells in Bronchoalveolar Lavage Fluids Reveals the Correlation of B Cell Characteristics and Disease Severity of Patients with SARS-CoV-2 Infection.	2.6 2.6 3.6	0 10 4
11 12 13	Immune Networks in Health and Disease. Molecules and Cells, 2021, 44, 279-280. The Role of Gut Microbiota in Modulating Tumor Growth and Anticancer Agent Efficacy. Molecules and Cells, 2021, 44, 356-362. Monocytes Contribute to IFN-β Production via the MyD88-Dependent Pathway and Cytotoxic T-Cell Responses against Mucosal Respiratory Syncytial Virus Infection. Immune Network, 2021, 21, e27. Single Cell Transcriptomic Re-analysis of Immune Cells in Bronchoalveolar Lavage Fluids Reveals the Correlation of B Cell Characteristics and Disease Severity of Patients with SARS-CoV-2 Infection. Immune Network, 2021, 21, e10. Current Understanding of the Innate Control of Toll-like Receptors in Response to SARS-CoV-2	2.6 2.6 3.6	0 10 4 11
11 12 13 14	Immune Networks in Health and Disease. Molecules and Cells, 2021, 44, 279-280. The Role of Gut Microbiota in Modulating Tumor Growth and Anticancer Agent Efficacy. Molecules and Cells, 2021, 44, 356-362. Monocytes Contribute to IFN-β Production via the MyD88-Dependent Pathway and Cytotoxic T-Cell Responses against Mucosal Respiratory Syncytial Virus Infection. Immune Network, 2021, 21, e27. Single Cell Transcriptomic Re-analysis of Immune Cells in Bronchoalveolar Lavage Fluids Reveals the Correlation of B Cell Characteristics and Disease Severity of Patients with SARS-CoV-2 Infection. Immune Network, 2021, 21, e10. Current Understanding of the Innate Control of Toll-like Receptors in Response to SARS-CoV-2 Infection. Viruses, 2021, 13, 2132. The Role of CD4+ T Cells and Microbiota in the Pathogenesis of Asthma. International Journal of	2.6 2.6 3.6 3.3	0 10 4 11 29

#	Article	IF	Citations
19	Re-analysis of Single Cell Transcriptome Reveals That the NR3C1-CXCL8-Neutrophil Axis Determines the Severity of COVID-19. Frontiers in Immunology, 2020, 11, 2145.	4.8	84
20	Host Protective Immune Responses against Influenza A Virus Infection. Viruses, 2020, 12, 504.	3.3	29
21	Immunophenotyping of COVID-19 and influenza highlights the role of type I interferons in development of severe COVID-19. Science Immunology, 2020, 5, .	11.9	689
22	Multivalent DNA vaccine protects against genital herpes by T-cell immune induction in vaginal mucosa. Antiviral Research, 2020, 177, 104755.	4.1	11
23	Contribution of Dendritic Cells in Protective Immunity against Respiratory Syncytial Virus Infection. Viruses, 2020, 12, 102.	3.3	16
24	Flagellin-Stimulated Production of Interferon- \hat{l}^2 Promotes Anti-Flagellin IgG2c and IgA Responses. Molecules and Cells, 2020, 43, 251-263.	2.6	7
25	Plasmacytoid Dendritic Cells Contribute to the Production of IFN- \hat{l}^2 via TLR7-MyD88-Dependent Pathway and CTL Priming during Respiratory Syncytial Virus Infection. Viruses, 2019, 11, 730.	3.3	20
26	Exogenous Interleukin-33 Contributes to Protective Immunity via Cytotoxic T-Cell Priming against Mucosal Influenza Viral Infection. Viruses, 2019, 11, 840.	3.3	12
27	Cell-Penetrating Mx1 Enhances Anti-Viral Resistance against Mucosal Influenza Viral Infection. Viruses, 2019, 11, 109.	3.3	24
28	Differential Role of Anti-Viral Sensing Pathway for the Production of Type I Interferon \hat{I}^2 in Dendritic Cells and Macrophages Against Respiratory Syncytial Virus A2 Strain Infection. Viruses, 2019, 11, 62.	3.3	10
29	Autophagy protein ATG5 regulates CD36 expression and anti-tumor MHC class II antigen presentation in dendritic cells. Autophagy, 2019, 15, 2091-2106.	9.1	61
30	Interactions between Host Immunity and Skin-Colonizing Staphylococci: No Two Siblings Are Alike. International Journal of Molecular Sciences, 2019, 20, 718.	4.1	5
31	Sustained Type I Interferon Reinforces NK Cell–Mediated Cancer Immunosurveillance during Chronic Virus Infection. Cancer Immunology Research, 2019, 7, 584-599.	3.4	27
32	Single mucosal vaccination targeting nucleoprotein provides broad protection against two lineages of influenza B virus. Antiviral Research, 2019, 163, 19-28.	4.1	20
33	The autophagy Protein <i>Atg5</i> Plays a Crucial Role in the Maintenance and Reconstitution Ability of Hematopoietic Stem Cells. Immune Network, 2019, 19, e12.	3.6	30
34	Abstract A141: Intratumoral depletion of regulatory T-cells using CD25-targeted photodynamic therapy induces antitumoral immune responses. , 2019, , .		0
35	Reduced oxidative capacity in macrophages results in systemic insulin resistance. Nature Communications, 2018, 9, 1551.	12.8	114
36	Vibrio vulnificus quorum-sensing molecule cyclo (Phe-Pro) inhibits RIG-I-mediated antiviral innate immunity. Nature Communications, 2018, 9, 1606.	12.8	30

#	Article	IF	Citations
37	Sox7 promotes high-grade glioma by increasing VEGFR2-mediated vascular abnormality. Journal of Experimental Medicine, 2018, 215, 963-983.	8.5	36
38	A mechanism for the induction of type 2 immune responses by a protease allergen in the genital tract. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1188-E1195.	7.1	11
39	Reconstruction of LPS Transfer Cascade Reveals Structural Determinants within LBP, CD14, and TLR4-MD2 for Efficient LPS Recognition and Transfer. Immunity, 2017, 46, 38-50.	14.3	274
40	Growth Differentiation Factor 15 Mediates Systemic Glucose Regulatory Action of T-Helper Type 2 Cytokines. Diabetes, 2017, 66, 2774-2788.	0.6	54
41	Intratumoral depletion of regulatory T cells using CD25-targeted photodynamic therapy in a mouse melanoma model induces antitumoral immune responses. Oncotarget, 2017, 8, 47440-47453.	1.8	28
42	Transient Depletion of CD169+ Cells Contributes to Impaired Early Protection and Effector CD8+ T Cell Recruitment against Mucosal Respiratory Syncytial Virus Infection. Frontiers in Immunology, 2017, 8, 819.	4.8	28
43	The Role of Skin and Orogenital Microbiota in Protective Immunity and Chronic Immune-Mediated Inflammatory Disease. Frontiers in Immunology, 2017, 8, 1955.	4.8	44
44	OASL1 deficiency promotes antiviral protection against genital herpes simplex virus type 2 infection by enhancing type I interferon production. Scientific Reports, 2016, 6, 19089.	3.3	20
45	Dysbiosis-induced IL-33 contributes to impaired antiviral immunity in the genital mucosa. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E762-71.	7.1	64
46	Clusterin Modulates Allergic Airway Inflammation by Attenuating CCL20-Mediated Dendritic Cell Recruitment. Journal of Immunology, 2016, 196, 2021-2030.	0.8	30
47	Caspase-1 Independent Viral Clearance and Adaptive Immunity Against Mucosal Respiratory Syncytial Virus Infection. Immune Network, 2015, 15, 73.	3.6	15
48	Faecalibaculum rodentium gen. nov., sp. nov., isolated from the faeces of a laboratory mouse. Antonie Van Leeuwenhoek, 2015, 108, 1309-1318.	1.7	57
49	Defective mitochondrial fission augments NLRP3 inflammasome activation. Scientific Reports, 2015, 5, 15489.	3.3	125
50	Pattern Recognition Receptors and Autophagy. Frontiers in Immunology, 2014, 5, 300.	4.8	65
51	Innate immune recognition of respiratory syncytial virus infection. BMB Reports, 2014, 47, 184-191.	2.4	43
52	Differential Roles of Lung Dendritic Cell Subsets Against Respiratory Virus Infection. Immune Network, 2014, 14, 128.	3.6	56
53	T cell-intrinsic role of IL-6 signaling in primary and memory responses. ELife, 2014, 3, e01949.	6.0	135
54	Signaling through the Adaptor Molecule MyD88 in CD4+ T Cells Is Required to Overcome Suppression by Regulatory T Cells. Immunity, 2014, 40, 78-90.	14.3	100

#	Article	IF	Citations
55	TAK1 regulates autophagic cell death by suppressing the phosphorylation of p70 S6 kinase 1. Scientific Reports, 2013, 3, 1561.	3.3	35
56	12th International Dendritic Cell Symposium, October 7–11, 2012; Daegu, Korea. Oncolmmunology, 2013, 2, e23245.	4.6	4
57	Autophagy as an Innate Immune Modulator. Immune Network, 2013, 13, 1.	3.6	19
58	Modulation of Pathogen Recognition by Autophagy. Frontiers in Immunology, 2012, 3, 44.	4.8	24
59	Autophagy in Innate Recognition of Pathogens and Adaptive Immunity. Yonsei Medical Journal, 2012, 53, 241.	2.2	14
60	Distinct Macrophage Phenotypes Contribute to Kidney Injury and Repair. Journal of the American Society of Nephrology: JASN, 2011, 22, 317-326.	6.1	718
61	The essential role of FKBP38 in regulating phosphatase of regenerating liver 3 (PRL-3) protein stability. Biochemical and Biophysical Research Communications, 2011, 406, 305-309.	2.1	20
62	Adjuvant effect of bacterial outer membrane vesicles with penta-acylated lipopolysaccharide on antigen-specific T cell priming. Vaccine, 2011, 29, 8293-8301.	3.8	61
63	In Vivo Requirement for Atg5 in Antigen Presentation by Dendritic Cells. Immunity, 2010, 32, 227-239.	14.3	425
64	Qualitative and quantitative differences in the intensity of Fas-mediated intracellular signals determine life and death in T cells. International Journal of Hematology, 2010, 92, 262-270.	1.6	2
65	Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2770-2775.	7.1	501
66	Differential roles of migratory and resident DCs in T cell priming after mucosal or skin HSV-1 infection. Journal of Experimental Medicine, 2009, 206, 359-370.	8.5	137
67	Inflammasome recognition of influenza virus is essential for adaptive immune responses. Journal of Experimental Medicine, 2009, 206, 79-87.	8.5	605
68	Autophagy and antiviral immunity. Current Opinion in Immunology, 2008, 20, 23-29.	5. 5	95
69	The autophagy gene <i>ATG5</i> plays an essential role in B lymphocyte development. Autophagy, 2008, 4, 309-314.	9.1	314
70	In vivo requirement for autophagy in antigen presentation by dendritic cells. FASEB Journal, 2008, 22, 1068.13.	0.5	0
71	Innate control of adaptive immunity: Dendritic cells and beyond. Seminars in Immunology, 2007, 19, 48-55.	5. 6	148
72	Inflammation Directs Memory Precursor and Short-Lived Effector CD8+ T Cell Fates via the Graded Expression of T-bet Transcription Factor. Immunity, 2007, 27, 281-295.	14.3	1,542

#	Article	IF	CITATIONS
73	Autophagy-Dependent Viral Recognition by Plasmacytoid Dendritic Cells. Science, 2007, 315, 1398-1401.	12.6	802
74	Hassall's corpuscles instruct dendritic cells to induce CD4+CD25+ regulatory T cells in human thymus. Nature, 2005, 436, 1181-1185.	27.8	682
75	Qualitatively differential regulation of T cell activation and apoptosis by T cell receptor ζ chain ITAMs and their tyrosine residues. International Immunology, 2004, 16, 1225-1236.	4.0	22
76	Tautomycetin as a novel immunosuppressant in transplantation. Transplantation Proceedings, 2003, 35, 547.	0.6	11
77	Immunosuppressive effects of tautomycetin in vivo and in vitro via T cell-specific apoptosis induction. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10617-10622.	7.1	56
78	Host and Microbiome Interplay Shapes the Vaginal Microenvironment. Frontiers in Immunology, $0,13,.$	4.8	19