Zhenyu Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4299827/publications.pdf

Version: 2024-02-01

28 28 28 1558
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Defect modulation and luminescence improvement of Mn ⁴⁺ -activated La(Mg,) Tj ETQq1 1 0.784314 Chemistry C, 2022, 10, 3472-3479.	rgBT /Ov 5.5	erlock 10 Tf 3 14
2	Fast synthesis of Dy ³⁺ and Tm ³⁺ co-doped double perovskite NaLaMgWO ₆ : a thermally stable single-phase white-emitting phosphor for WLEDs. Journal of Materials Chemistry C, 2020, 8, 2117-2122.	5 . 5	66
3	Synthesis and photoluminescence properties of perovskite LaMg _{0.667} Nb _{0.333} O ₃ :Mn ⁴⁺ ,Bi ³⁺ : a novel deep-red phosphor for WLEDs. Journal of Materials Chemistry C, 2020, 8, 13297-13305.	5.5	22
4	Energy Transfer: Energy Transfer between Tb 3+ and Eu 3+ in LaPO 4 : Pulsed versus Switchedâ€off Continuous Wave Excitation (Adv. Sci. 10/2019). Advanced Science, 2019, 6, 1970060.	11.2	2
5	Energy Transfer between Tb ³⁺ and Eu ³⁺ in LaPO ₄ : Pulsed versus Switchedâ€off Continuous Wave Excitation. Advanced Science, 2019, 6, 1900487.	11.2	20
6	Electronic Spectra of Cs ₂ NaYb(NO ₂) ₆ : Is There Quantum Cutting?. Journal of Physical Chemistry A, 2018, 122, 4381-4388.	2.5	5
7	Reversible and Sensitive Hg2+ Detection by a Cell-Permeable Ytterbium Complex. Inorganic Chemistry, 2018, 57, 120-128.	4.0	29
8	Impact of Lanthanide Nanomaterials on Photonic Devices and Smart Applications. Small, 2018, 14, e1801882.	10.0	128
9	Room temperature molecular up conversion in solution. Nature Communications, 2016, 7, 11978.	12.8	83
10	Fast synthesis of red Li ₃ 334) ₈ :Eu ³⁺ phosphors for white LEDs under near-UV excitation by a microwave-assisted solid state reaction method and photoluminescence studies. Journal of Materials Chemistry C, 2015, 3, 12322-12327.	5. 5	48
11	The reported anomalous emission intensity of the ⁵ D ₀ → ^{F₄ transition of Eu³⁺ in a molybdate double perovskite. Journal of Materials Chemistry C, 2015, 3, 960-963.}	5.5	12
12	Theory on cooperative quantum transitions of three identical lanthanide ions. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 303.	2.1	4
13	Enhanced Near-Infrared Upconversion Luminescence of GdF ₃ Yb ³⁺ by Li ⁺ Journal of Nanoscience and Nanotechnology, 2014, 14, 3687-3689.	0.9	6
14	Multi-ion cooperative processes in Yb3+ clusters. Light: Science and Applications, 2014, 3, e193-e193.	16.6	148
15	Controllable synthesis and size-dependent upconversion luminescence properties of Lu ₂ O ₃ :Yb ³⁺ /Er ³⁺ nanospheres. CrystEngComm, 2014, 16, 4329-4337.	2.6	29
16	Improved Ultraviolet Upconversion Emissions of Ho ³⁺ in Hexagonal NaYF ₄ Microcrystals Under 980 nm Excitation. Journal of Nanoscience and Nanotechnology, 2014, 14, 3490-3493.	0.9	4
17	Temperature sensor based on the UV upconversion luminescence of Gd3+ in Yb3+–Tm3+–Gd3+ codoped NaLuF4 microcrystals. Journal of Materials Chemistry C, 2013, 1, 5502.	5 . 5	225
18	Influence of core size on the upconversion luminescence properties of spherical Gd2O3:Yb3+/Er3+@SiO2 particles with core-shell structures. Journal of Applied Physics, 2013, 114, 183109.	2.5	15

#	Article	IF	CITATIONS
19	Tunable upconversion emission in Ba2YF7:Yb3+/Er3+ nanocrystals with different Yb3+ concentration. Materials Research Bulletin, 2013, 48, 2361-2364.	5.2	8
20	Color control and white upconversion luminescence of LaOF:Ln3+ (Ln = Yb, Er, Tm) nanocrystals prepared by the sol–gel Pechini method. Dalton Transactions, 2013, 42, 5159.	3.3	46
21	Enhanced deep-ultraviolet upconversion emission of Gd3+ sensitized by Yb3+ and Ho3+ in \hat{l}^2 -NaLuF4 microcrystals under 980 nm excitation. Journal of Materials Chemistry C, 2013, 1, 2485.	5.5	72
22	Improved 800 nm emission of Tm^3+ sensitized by Yb^3+ and Ho^3+ in \hat{I}^2 -NaYF_4 nanocrystals under 980 nm excitation. Optics Express, 2012, 20, 7602.	3.4	34
23	Direct evidence of energy transfer from Er3+ to Sm3+ in Er3+/Sm3+ co-doped system. Chemical Physics Letters, 2012, 543, 166-169.	2.6	8
24	Controllable synthesis, upconversion luminescence, and paramagnetic properties of NaGdF4:Yb3+,Er3+ microrods. Journal of Fluorine Chemistry, 2012, 144, 157-164.	1.7	17
25	Upconversion emissions from high-energy states of Eu^3+ sensitized by Yb^3+ and Ho^3+ in \hat{I}^2 -NaYF_4 microcrystals under 980 nm excitation. Optics Express, 2011, 19, 25471.	3.4	32
26	Ultraviolet Upconversion Fluorescence of Er3+ in Yb3+/Er3+-Codoped Gd2O3 Nanotubes. Journal of Nanoscience and Nanotechnology, 2011, 11, 9765-9769.	0.9	4
27	Infrared to ultraviolet upconversion fluorescence of Gd3+ in \hat{l}^2 -NaYF4 microcrystals induced by 1560nm excitation. Optical Materials, 2011, 33, 783-787.	3.6	18
28	Size Dependent Ultraviolet Upconversion in Single YF3:Yb3+/Tm3+ Particles. Journal of Nanoscience and Nanotechnology, 2011, 11, 9584-9587.	0.9	3