
Qingfeng Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4299352/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A binder-free high silicon content flexible anode for Li-ion batteries. Energy and Environmental Science, 2020, 13, 848-858.	30.8	245
2	A wood–polypyrrole composite as a photothermal conversion device for solar evaporation enhancement. Journal of Materials Chemistry A, 2019, 7, 20706-20712.	10.3	189
3	Fabrication and characterization of nanofibrillated cellulose and its aerogels from natural pine needles. Carbohydrate Polymers, 2015, 119, 202-209.	10.2	152
4	Fabrication of cellulose-based aerogels from waste newspaper without any pretreatment and their use for absorbents. Carbohydrate Polymers, 2015, 123, 150-156.	10.2	143
5	Green and facile fabrication of carbon aerogels from cellulose-based waste newspaper for solving organic pollution. Carbohydrate Polymers, 2016, 136, 95-100.	10.2	141
6	Lignocellulose Aerogel from Wood-Ionic Liquid Solution (1-Allyl-3-methylimidazolium Chloride) under Freezing and Thawing Conditions. Biomacromolecules, 2011, 12, 1860-1867.	5.4	137
7	Cellulose-Based Hybrid Structural Material for Radiative Cooling. Nano Letters, 2021, 21, 397-404.	9.1	135
8	Fabrication of mesoporous lignocellulose aerogels from wood via cyclic liquid nitrogen freezing–thawing in ionic liquid solution. Journal of Materials Chemistry, 2012, 22, 13548.	6.7	120
9	3D assembly based on 2D structure of Cellulose Nanofibril/Graphene Oxide Hybrid Aerogel for Adsorptive Removal of Antibiotics in Water. Scientific Reports, 2017, 7, 45914.	3.3	114
10	Hierarchical Ni-Co-S@Ni-W-O core–shell nanosheet arrays on nickel foam for high-performance asymmetric supercapacitors. Nano Research, 2018, 11, 1415-1425.	10.4	96
11	Implanting FeCo/C nanocages with tunable electromagnetic parameters in anisotropic wood carbon aerogels for efficient microwave absorption. Journal of Materials Chemistry A, 2020, 8, 18863-18871.	10.3	94
12	Vertically aligned nanorod-like rutileTiO2 single crystal nanowire bundles with superior electron transport and photoelectrocatalytic properties. Journal of Materials Chemistry, 2012, 22, 2465-2472.	6.7	84
13	One Step Construction of Nitrogen–Carbon Derived from <i>Bradyrhizobium japonicum</i> for Supercapacitor Applications with a Soybean Leaf as a Separator. ACS Sustainable Chemistry and Engineering, 2018, 6, 4695-4704.	6.7	82
14	Growth of hydrophobic TiO2 on wood surface using a hydrothermal method. Journal of Materials Science, 2011, 46, 7706-7712.	3.7	73
15	Naturally three-dimensional laminated porous carbon network structured short nano-chains bridging nanospheres for energy storage. Journal of Materials Chemistry A, 2017, 5, 15759-15770.	10.3	72
16	Cellulose as an adhesion agent for the synthesis of lignin aerogel with strong mechanical performance, Sound-absorption and thermal Insulation. Scientific Reports, 2016, 6, 32383.	3.3	70
17	All-round utilization of biomass derived all-solid-state asymmetric carbon-based supercapacitor. Journal of Colloid and Interface Science, 2018, 528, 349-359.	9.4	70
18	Fabrication of hydrophobic, electrically conductive and flame-resistant carbon aerogels by pyrolysis of regenerated cellulose aerogels. Carbohydrate Polymers, 2015, 118, 115-118.	10.2	63

#	Article	IF	CITATIONS
19	Improvement of water resistance and dimensional stability of wood through titanium dioxide coating. Holzforschung, 2010, 64, .	1.9	62
20	A 3D titanate aerogel with cellulose as the adsorption-aggregator for highly efficient water purification. Journal of Materials Chemistry A, 2017, 5, 5813-5819.	10.3	62
21	Biomimetic taro leaf-like films decorated on wood surfaces using soft lithography for superparamagnetic and superhydrophobic performance. Journal of Materials Science, 2017, 52, 7428-7438.	3.7	61
22	A simple, one-step hydrothermal approach to durable and robust superparamagnetic, superhydrophobic and electromagnetic wave-absorbing wood. Scientific Reports, 2016, 6, 35549.	3.3	60
23	Anisotropic, Flexible Wood Hydrogels and Wrinkled, Electrodeposited Film Electrodes for Highly Sensitive, Wide-Range Pressure Sensing. ACS Applied Materials & Interfaces, 2020, 12, 43024-43031.	8.0	59
24	Artificial Wooden Nacre: A High Specific Strength Engineering Material. ACS Nano, 2020, 14, 2036-2043.	14.6	57
25	Improved weathering performance and wettability of wood protected by CeO ₂ coating deposited onto the surface. Holzforschung, 2014, 68, 345-351.	1.9	54
26	Processing Lignocellulose-Based Composites into an Ultrastrong Structural Material. ACS Nano, 2019, 13, 371-376.	14.6	53
27	Self-photodegradation of formaldehyde under visible-light by solid wood modified via nanostructured Fe-doped WO3 accompanied with superior dimensional stability. Journal of Hazardous Materials, 2017, 328, 127-139.	12.4	49
28	Fabrication of Cellulose Nanofiber/AlOOH Aerogel for Flame Retardant and Thermal Insulation. Materials, 2017, 10, 311.	2.9	49
29	Testing of the superhydrophobicity of a zinc oxide nanorod array coating on wood surface prepared by hydrothermal treatment. Holzforschung, 2012, 66, 739-744.	1.9	48
30	Fabrication of nitrogen-doped porous electrically conductive carbon aerogel from waste cabbage for supercapacitors and oil/water separation. Journal of Materials Science: Materials in Electronics, 2018, 29, 4334-4344.	2.2	48
31	Double-Network Hierarchical-Porous Piezoresistive Nanocomposite Hydrogel Sensors Based on Compressive Cellulosic Hydrogels Deposited with Silver Nanoparticles. ACS Sustainable Chemistry and Engineering, 2020, 8, 7480-7488.	6.7	48
32	Fabrication of superhydrophobic bamboo timber based on an anatase TiO ₂ film for acid rain protection and flame retardancy. RSC Advances, 2015, 5, 62265-62272.	3.6	45
33	One-step solvothermal deposition of ZnO nanorod arrays on a wood surface for robust superamphiphobic performance and superior ultraviolet resistance. Scientific Reports, 2016, 6, 35505.	3.3	45
34	Preparation, characterization and oil adsorption properties of cellulose aerogels from four kinds of plant materials via a NAOH/PEG aqueous solution. Fibers and Polymers, 2015, 16, 302-307.	2.1	44
35	Ultralight and hydrophobic nanofibrillated cellulose aerogels from coconut shell with ultrastrong adsorption properties. Journal of Applied Polymer Science, 2015, 132, .	2.6	43
36	Nitrogen, Sulfur, Phosphorous Coâ€doped Interconnected Porous Carbon Nanosheets with High Defect Density for Enhancing Supercapacitor and Lithiumâ€ion Battery Properties. ChemElectroChem, 2018, 5, 2367-2375.	3.4	40

3

#	Article	IF	CITATIONS
37	Preparation, characterization, and antibacterial properties of silver nanoparticles embedded into cellulose aerogels. Polymer Composites, 2016, 37, 1137-1142.	4.6	38
38	Cellulose Fibers Constructed Convenient Recyclable 3D Graphene-Formicary-like Î-Bi ₂ O ₃ Aerogels for the Selective Capture of Iodide. ACS Applied Materials & Interfaces, 2017, 9, 20554-20560.	8.0	38
39	Stress sensitive electricity based on Ag/cellulose nanofiber aerogel for self-reporting. Carbohydrate Polymers, 2017, 168, 265-273.	10.2	38
40	WC _{1â^'x} â€Coupled 3D Porous Defective gâ€C ₃ N ₄ for Efficient Photocatalytic Overall Water Splitting. Solar Rrl, 2019, 3, 1800341.	5.8	38
41	Superhydrophobic conductive wood with oil repellency obtained by coating with silver nanoparticles modified by fluoroalkyl silane. Holzforschung, 2016, 70, 63-68.	1.9	37
42	Prolonging the combustion duration of wood by TiO2 coating synthesized using cosolvent-controlled hydrothermal method. Journal of Materials Science, 2010, 45, 6661-6667.	3.7	36
43	High-loading individually dispersed NiCo ₂ O ₄ anchoring on checkerboard-like C/CNT nanosheets as a binder-free high rate electrode for lithium storage. Journal of Materials Chemistry A, 2019, 7, 3632-3641.	10.3	36
44	Improved UV resistance in wood through the hydrothermal growth of highly ordered ZnO nanorod arrays. Journal of Materials Science, 2012, 47, 4457-4462.	3.7	35
45	A biomimeticâ€structured woodâ€derived carbon sponge with highly compressible and biocompatible properties for humanâ€motion detection. InformaÄnÃ-Materiály, 2020, 2, 1225-1235.	17.3	34
46	Hydrothermal Synthesis of Nanooctahedra MnFe2O4 onto the Wood Surface with Soft Magnetism, Fire Resistance and Electromagnetic Wave Absorption. Nanomaterials, 2017, 7, 118.	4.1	31
47	Strong Electron Coupling of Ru and Vacancyâ€Rich Carbon Dots for Synergistically Enhanced Hydrogen Evolution Reaction. Small, 2021, 17, e2102496.	10.0	31
48	Candle soot nanoparticle-decorated wood for efficient solar vapor generation. Sustainable Energy and Fuels, 2020, 4, 354-361.	4.9	30
49	A Universal Aqueous Conductive Binder for Flexible Electrodes. Advanced Functional Materials, 2021, 31, 2102284.	14.9	30
50	MnO ₂ nanoflakes/cellulose nanofibre aerogel fabricated via ultrasonication for high-performance water desalination. Journal of Materials Chemistry A, 2017, 5, 9580-9590.	10.3	29
51	Preparation of High Mechanical Performance Nano-Fe3O4/Wood Fiber Binderless Composite Boards for Electromagnetic Absorption via a Facile and Green Method. Nanomaterials, 2018, 8, 52.	4.1	28
52	Bio-Inspired nacre-like nanolignocellulose-poly (vinyl alcohol)-TiO2 composite with superior mechanical and photocatalytic properties. Scientific Reports, 2017, 7, 1823.	3.3	27
53	Cellulose as an Adhesive for the Synthesis of Carbon Aerogel with a 3D Hierarchical Network Structure for Capacitive Energy Storage. ChemElectroChem, 2019, 6, 2586-2594.	3.4	27
54	Cellulose nanofibers from bamboo and their nanocomposites with polyvinyl alcohol: Preparation and characterization. Polymer Composites, 2018, 39, 2611-2619.	4.6	26

#	Article	IF	CITATIONS
55	Preparation of mechanically strong and lightweight cellulose aerogels from cellulose-NaOH/PEG solution. Journal of Sol-Gel Science and Technology, 2015, 74, 256-259.	2.4	24
56	Synthesis of Pt-Loaded NiFe-LDH Nanosheets on Wood Veneer for Efficient Gaseous Formaldehyde Degradation. ACS Applied Materials & Interfaces, 2020, 12, 37147-37154.	8.0	24
57	Muscle-inspired capacitive tactile sensors with superior sensitivity in an ultra-wide stress range. Journal of Materials Chemistry C, 2020, 8, 5913-5922.	5.5	23
58	Reversible Photocontrol of Wood-Surface Wettability Between Superhydrophilicity and Superhydrophobicity Based on a TiO ₂ Film. Journal of Wood Chemistry and Technology, 2015, 35, 365-373.	1.7	21
59	Ultrafine Mn ferrite by anchoring in a cellulose framework for efficient toxic ions capture and fast water/oil separation. Carbohydrate Polymers, 2018, 196, 117-125.	10.2	19
60	Fabrication of Superhydrophobic Mg/Al Layered Double Hydroxide (LDH) Coatings on Medium Density Fiberboards (MDFs) with Flame Retardancy. Materials, 2018, 11, 1113.	2.9	19
61	Wrinkled Carbon-Coated NiCo2O4 Nanoclusters Constructed by Self-Encapsulation of Cellulose Nanonetwork for Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 10840-10846.	6.7	19
62	Multifunctional Ternary Hybrid Hydrogel Sensor Prepared <i>via</i> the Synergistic Stabilization Effect. ACS Applied Materials & amp; Interfaces, 2021, 13, 57725-57734.	8.0	19
63	Fabrication of a Nano-ZnO/Polyethylene/Wood-Fiber Composite with Enhanced Microwave Absorption and Photocatalytic Activity via a Facile Hot-Press Method. Materials, 2017, 10, 1267.	2.9	18
64	One-Step Preparation of Graphene Oxide/Cellulose Nanofibril Hybrid Aerogel for Adsorptive Removal of Four Kinds of Antibiotics. Journal of Nanomaterials, 2017, 2017, 1-10.	2.7	18
65	Natural cellulose nanofiber extracted from cell wall of bamboo leaf and its derived multifunctional aerogel. Polymer Composites, 2018, 39, 3869-3876.	4.6	18
66	Facile Fabrication of a PDMS@Stearic Acid-Kaolin Coating on Lignocellulose Composites with Superhydrophobicity and Flame Retardancy. Materials, 2018, 11, 727.	2.9	16
67	Preparation and characterization of high-strength and water resistant lignocelluloses based composites bonded by branched polyethylenimine (PEI). International Journal of Biological Macromolecules, 2019, 141, 369-377.	7.5	16
68	Preliminary observations of hydrothermal growth of nanomaterials on wood surfaces. Wood Science and Technology, 2014, 48, 51-58.	3.2	15
69	Layer-by-layer self-assembly of reduced graphene oxide on bamboo timber surface with improved decay resistance. European Journal of Wood and Wood Products, 2018, 76, 1223-1231.	2.9	15
70	Improved dielectricity of anisotropic wood slices and bioinspired micropatterned film electrodes for highly sensitive flexible electronic sensors. Journal of Materials Chemistry C, 2020, 8, 16113-16120.	5.5	15
71	Cellulose hydrogel functionalized titanate microspheres with self-cleaning for efficient purification of heavy metals in oily wastewater. Cellulose, 2020, 27, 7751-7763.	4.9	15
72	Bioinspired Construction of Micronano Lignocellulose into an Impact Resistance "Wooden Armor― With Bouligand Structure. ACS Nano, 2022, 16, 7525-7534.	14.6	15

#	Article	IF	CITATIONS
73	High Mechanical Property of Laminated Electromechanical Sensors by Carbonized Nanolignocellulose/Graphene Composites. ACS Applied Materials & Interfaces, 2018, 10, 7344-7351.	8.0	14
74	The properties of fibreboard based on nanolignocelluloses/CaCO3/PMMA composite synthesized through mechano-chemical method. Scientific Reports, 2018, 8, 5121.	3.3	14
75	Effect of aluminosilicate on flame-retardant and mechanical properties of lignocellulose composite. Cellulose, 2018, 25, 4167-4177.	4.9	14
76	Green Construction of an Oil–Water Separator at Room Temperature and Its Promotion to an Adsorption Membrane. Langmuir, 2019, 35, 11071-11079.	3.5	14
77	Fabrication of a Robust and Flame-Retardant Alooh-Lignocellulose Composite with a Lotus-Leaf-Like Superhydrophobic Coating. Journal of Wood Chemistry and Technology, 2020, 40, 44-57.	1.7	14
78	Solvothermal fabrication and growth behavior study of spherical MnFe ₂ O ₄ through a bottom-up method on wood substrate with effective microwave absorption. RSC Advances, 2017, 7, 24764-24770.	3.6	13
79	"Pickles Method―Inspired Tomato Derived Hierarchical Porous Carbon for High-Performance and Safer Capacitive Output. Journal of the Electrochemical Society, 2018, 165, A1054-A1063.	2.9	12
80	Fabrication of Fe3O4-modified lignocellulose composite for microwave absorption via a sol–gel-assisted hot-pressing process. Cellulose, 2019, 26, 5455-5466.	4.9	12
81	Foldable highâ€strength electrode enabled by nanosheet subunits for advanced sodiumâ€ion batteries. InformaÄnA-Materiály, 2022, 4, .	17.3	12
82	Discarded Biomass Derived Ordered Hierarchical Porous WO ₃ –C as Advanced Electrochemical Materials. ACS Sustainable Chemistry and Engineering, 2018, 6, 13897-13906.	6.7	11
83	A flexible hydrogel tactile sensor with low compressive modulus and dynamic piezoresistive response regulated by lignocellulose/graphene aerogels. Journal of Materials Chemistry C, 2021, 9, 12895-12903.	5.5	11
84	Bulky Macroporous TiO2Photocatalyst with Cellular Structure via Facile Wood-Template Method. International Journal of Photoenergy, 2013, 2013, 1-6.	2.5	10
85	Mesopore-dominant nitrogen-doped carbon with a large defect degree and high conductivity via inherent hydroxyapatite-induced self-activation for lithium-ion batteries. RSC Advances, 2018, 8, 12204-12210.	3.6	10
86	Lignocellulose-Chitosan-Multiwalled Carbon Nanotube Composites with Improved Mechanical Strength, Dimensional Stability and Fire Retardancy. Polymers, 2018, 10, 341.	4.5	10
87	Fabrication of Robust Superhydrophobic Bamboo Based on ZnO Nanosheet Networks with Improved Water-, UV-, and Fire-Resistant Properties. Journal of Nanomaterials, 2015, 2015, 1-9.	2.7	9
88	A Facile Low-Temperature Hydrothermal Method to Prepare Anatase Titania/Cellulose Aerogels with Strong Photocatalytic Activities for Rhodamine B and Methyl Orange Degradations. Journal of Nanomaterials, 2015, 2015, 1-8.	2.7	8
89	Cross-Linked ZnO Nanowalls Immobilized onto Bamboo Surface and Their Use as Recyclable Photocatalysts. Journal of Nanomaterials, 2014, 2014, 1-7.	2.7	6
90	Utilizing cellulose sheets as structure promoter constructing different micro-nano titanate nanotubes networks for green water purification. Carbohydrate Polymers, 2017, 175, 756-764.	10.2	6

#	Article	IF	CITATIONS
91	New Insight on Promoted thermostability of poplar wood modified by MnFe2O4 nanoparticles through the pyrolysis behaviors and kinetic study. Scientific Reports, 2017, 7, 1418.	3.3	6
92	Endowing graphene with superior cation/anion co-purification and visible photocatalysis performances by in situ deposition of silver compounds. Journal of Materials Chemistry A, 2017, 5, 20903-20910.	10.3	3
93	Thermally induced gel from cellulose/NaOH/PEG solution: preparation, characterization and mechanical properties. Applied Physics A: Materials Science and Processing, 2015, 119, 45-48.	2.3	2
94	Spawns Structure of Rod-Like ZnO Wrapped in Cellulose Nanofibers for Electromagnetic Wave Absorption. Journal of Nanomaterials, 2017, 2017, 1-6.	2.7	2
95	Hydrothermal deposition of CoFe2o4 with a micro nano binary structure onto a wood surface with related magnetic property and microwave absorption. Journal of Wood Chemistry and Technology, 2019, 39, 31-42.	1.7	2
96	The preparation, properties, functionality of a eugenol-based epoxy resin for bronze ware repairment. Journal of Polymer Research, 2022, 29, 1.	2.4	2
97	Reversible photo-responsive smart wood with resistant to extreme weather. Journal of Materials Science, 2022, 57, 3337-3347.	3.7	2
98	Superhydrophobicity, Microwave Absorbing Property of NiFe2O4/Wood Hybrids under Harsh Conditions. Journal of Nanomaterials, 2015, 2015, 1-8.	2.7	1
99	Nanoscale UV Absorber Boosting Coloration of Apple Skin. ACS Sustainable Chemistry and Engineering, 2019, 7, 16295-16300.	6.7	1
100	Characterization and photocatalytic activity of titanate nanotube using a solvothermal route. , 2010, ,		0
101	Preliminary studies of multi-micro/nanomaterials immobilized on the bamboo timber surface. Journal of the Indian Academy of Wood Science, 2016, 13, 145-151.	0.9	0
102	Stretchable Photonic Semicrystal Interface by Pressureâ€Assistant Selfâ€Assembly. Advanced Materials Interfaces, 2022, 9, .	3.7	0