S Mani Sarathy

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4299236/s-mani-sarathy-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 277
 9,768
 49
 88

 papers
 citations
 h-index
 g-index

 288
 11,755
 5.8
 6.77

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
277	Artificial intelligenceBnabled fuel design 2022 , 47-67		
276	A decoupled modeling approach and experimental measurements for pyrolysis of C6-C10 saturated fatty acid methyl esters (FAMEs). <i>Combustion and Flame</i> , 2022 , 111955	5.3	2
275	A comprehensive neural network model for predicting flash point of oxygenated fuels using a functional group approach. <i>Fuel</i> , 2022 , 317, 123428	7.1	3
274	On the effects of CO2 atmosphere in the pyrolysis of Salicornia bigelovii. <i>Bioresource Technology Reports</i> , 2022 , 17, 100950	4.1	2
273	High purity, self-sustained, pressurized hydrogen production from ammonia in a catalytic membrane reactor. <i>Chemical Engineering Journal</i> , 2022 , 431, 134310	14.7	4
272	Ammonia and ammonia/hydrogen blends oxidation in a jet-stirred reactor: Experimental and numerical study. <i>Fuel</i> , 2022 , 310, 122202	7.1	2
271	On the lubricity mechanism of carbon-based nanofluid fuels. <i>Fuel</i> , 2022 , 308, 122031	7.1	
270	A reinforcement learning-based economic model predictive control framework for autonomous operation of chemical reactors. <i>Chemical Engineering Journal</i> , 2022 , 428, 130993	14.7	1
269	A Methodology for Designing Octane Number of Fuels Using Genetic Algorithms and Artificial Neural Networks. <i>Energy & Designing Octane</i> , 2022, 36, 3867-3880	4.1	1
268	The effect of hydrogen bonding on the reactivity of OH radicals with prenol and isoprenol: a shock tube and multi-structural torsional variational transition state theory study <i>Physical Chemistry Chemical Physics</i> , 2022 ,	3.6	3
267	Influence of gasoline fuel formulation on lean autoignition in a mixed-mode-combustion (deflagration/autoignition) engine. <i>Combustion and Flame</i> , 2022 , 242, 112163	5.3	O
266	Accurate thermochemistry prediction of extensive Polycyclic aromatic hydrocarbons (PAHs) and relevant radicals. <i>Combustion and Flame</i> , 2022 , 242, 112159	5.3	0
265	The impact of gasoline formulation on turbulent jet ignition. Fuel, 2022, 324, 124373	7.1	2
264	Revisiting low temperature oxidation chemistry of n-heptane. <i>Combustion and Flame</i> , 2022 , 242, 11217	7 5.3	1
263	An experimental and kinetic modeling study of the pyrolysis of isoprene, a significant biogenic hydrocarbon in naturally occurring vegetation fires. <i>Combustion and Flame</i> , 2022 , 242, 112206	5.3	O
262	High-Temperature Pyrolysis and Combustion of C5119 Fatty Acid Methyl Esters (FAMEs): A Lumped Kinetic Modeling Study. <i>Energy & Energy</i> 35, 19553-19567	4.1	2
261	Evaporation, break-up, and pyrolysis of multi-component Arabian Light crude oil droplets at various temperatures. <i>International Journal of Heat and Mass Transfer</i> , 2021 , 183, 122175	4.9	3

(2021-2021)

5 16	
5	
Ĭ	
4	
1	
3	
4	
5	
6	
8	
4	
2	
3	
12	
4	
5	
_	
	4

242	Using deep neural networks to diagnose engine pre-ignition. <i>Proceedings of the Combustion Institute</i> , 2021 , 38, 5915-5922	5.9	1
241	A technological roadmap to the ammonia energy economy: Current state and missing technologies. <i>Chemical Engineering Journal</i> , 2021 , 408, 127310	14.7	28
240	A lumped kinetic model for high-temperature pyrolysis and combustion of 50 surrogate fuel components and their mixtures. <i>Fuel</i> , 2021 , 286, 119361	7.1	10
239	Counterflow ignition and extinction of FACE gasoline fuels. <i>Proceedings of the Combustion Institute</i> , 2021 , 38, 2323-2331	5.9	1
238	Understanding the synergistic blending octane behavior of 2-methylfuran. <i>Proceedings of the Combustion Institute</i> , 2021 , 38, 5625-5633	5.9	2
237	Probing the Chemical Kinetics of Minimalist Functional Group Gasoline Surrogates. <i>Energy & Energy & E</i>	4.1	8
236	Polymeric waste valorization at a crossroads: ten ways to bridge the research on model and complex/real feedstock. <i>Green Chemistry</i> , 2021 , 23, 4656-4664	10	1
235	Efficient alkane oxidation under combustion engine and atmospheric conditions. <i>Communications Chemistry</i> , 2021 , 4,	6.3	11
234	One-step conversion of crude oil to light olefins using a multi-zone reactor. <i>Nature Catalysis</i> , 2021 , 4, 233-241	36.5	21
233	The Role of Intermediate-Temperature Heat Release in Octane Sensitivity of Fuels with Matching Research Octane Number. <i>Energy & Description</i> 2021, 35, 4457-4477	4.1	4
232	Rapid soot inception via 🖽 lkynyl substitution of polycyclic aromatic hydrocarbons. Fuel, 2021 , 295, 1205	5 8 01	13
231	Atomistic simulations of syngas oxy-combustion in supercritical CO2. <i>Journal of CO2 Utilization</i> , 2021 , 49, 101554	7.6	1
230	Effects of ammonia addition on soot formation in ethylene laminar premixed flames. <i>Combustion and Flame</i> , 2021 , 111698	5.3	2
229	Hydrogen Evolution from Hydrocarbon Pyrolysis in a Simulated Liquid Metal Bubble Reactor. <i>Energy & Energy & En</i>	4.1	1
228	Unraveling the octane response of gasoline/ethanol blends: Paving the way to formulating gasoline surrogates. <i>Fuel</i> , 2021 , 299, 120882	7.1	7
227	Probing the gas-phase oxidation of ammonia: Addressing uncertainties with theoretical calculations. <i>Combustion and Flame</i> , 2021 , 111708	5.3	1
226	An investigation into the pyrolysis and oxidation of bio-oil from sugarcane bagasse: Kinetics and evolved gases using TGA-FTIR. <i>Journal of Environmental Chemical Engineering</i> , 2021 , 9, 106144	6.8	7
225	On the origins of lubricity and surface cleanliness in ethanol-diesel fuel blends. <i>Fuel</i> , 2021 , 302, 121135	7.1	2

(2020-2021)

A comprehensive combustion chemistry study of n-propylcyclohexane. <i>Combustion and Flame</i> , 2021 , 233, 111576	5.3	4	
Combustion chemistry of ammonia/hydrogen mixtures: Jet-stirred reactor measurements and comprehensive kinetic modeling. <i>Combustion and Flame</i> , 2021 , 234, 111653	5.3	14	
Low-temperature oxidation chemistry of 2,4,4-trimethyl-1-pentene (diisobutylene) triggered by dimethyl ether (DME): A jet-stirred reactor oxidation and kinetic modeling investigation. <i>Combustion and Flame</i> , 2021 , 234, 111629	5.3	О	
Bio-oil and biochar production from halophyte biomass: effects of pre-treatment and temperature on Salicornia bigelovii pyrolysis. <i>Sustainable Energy and Fuels</i> , 2021 , 5, 2234-2248	5.8	5	
Laminar Burning Velocities of Formic Acid and Formic Acid/Hydrogen Flames: An Experimental and Modeling Study. <i>Energy & Description</i> 2021, 35, 1760-1767	4.1	2	
Gas-to-Liquid Phase Transition of PAH at Flame Temperatures. <i>Journal of Physical Chemistry A</i> , 2020 , 124, 3896-3903	2.8	6	
Identification of volatile constituents released from IQOS heat-not-burn tobacco HeatSticks using a direct sampling method. <i>Tobacco Control</i> , 2020 ,	5.3	4	
Understanding the blending octane behaviour of unsaturated hydrocarbons: A case study of C4 molecules and comparison with toluene. <i>Fuel</i> , 2020 , 275, 117971	7.1	2	
Screening gas-phase chemical kinetic models: Collision limit compliance and ultrafast timescales. <i>International Journal of Chemical Kinetics</i> , 2020 , 52, 599-610	1.4	6	
Laminar Burning Velocities and Kinetic Modeling of a Renewable E-Fuel: Formic Acid and Its Mixtures with H2 and CO2. <i>Energy & Energy & Society</i> 2020, 34, 7564-7572	4.1	13	
A Systematic Theoretical Kinetics Analysis for the Waddington Mechanism in the Low-Temperature Oxidation of Butene and Butanol Isomers. <i>Journal of Physical Chemistry A</i> , 2020 , 124, 5646-5656	2.8	6	
Oxidation kinetics of n-pentanol: A theoretical study of the reactivity of the 1-hydroxy-1-peroxypentyl radical. <i>Combustion and Flame</i> , 2020 , 219, 20-32	5.3	11	
Investigating the Effects of C3 and C4 Alcohol Blending on Ignition Quality of Gasoline Fuels. <i>Energy & Energy & Energy</i>	4.1	0	
Kinetics of the benzyl + HO and benzoxyl + OH barrierless association reactions: fate of the benzyl hydroperoxide adduct under combustion and atmospheric conditions. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 9029-9039	3.6	O	
PAH formation from jet stirred reactor pyrolysis of gasoline surrogates. <i>Combustion and Flame</i> , 2020 , 219, 312-326	5.3	21	
Autoignition of diethyl ether and a diethyl ether/ethanol blend. Fuel, 2020, 279, 118553	7.1	9	
Enhanced lubrication by core-shell TiO2 nanoparticles modified with gallic acid ester. <i>Tribology International</i> , 2020 , 146, 106263	4.9	12	
Spray combustion simulation study of waste cooking oil biodiesel and diesel under direct injection diesel engine conditions. <i>Fuel</i> , 2020 , 267, 117240	7.1	14	
	Combustion chemistry of ammonia/hydrogen mixtures: Jet-stirred reactor measurements and comprehensive kinetic modeling. Combustion and Flame, 2021, 234, 111653 Low-temperature oxidation chemistry of 2,4,4-trimethyl-1-pentene (diisobutylene) triggered by dimethyl ether (DME): A jet-stirred reactor oxidation and kinetic modeling investigation. Combustion and Flame, 2021, 234, 111629 Bio-oil and biochar production from halophyte biomass: effects of pre-treatment and temperature on Salicornia bigelovii pyrolysis. Sustainable Energy and Fuels, 2021, 5, 2234-2248 Laminar Burning Velocities of Formic Acid and Formic Acid/Hydrogen Flames: An Experimental and Modeling Study. Energy & Emp: Fuels, 2021, 35, 1760-1767 Gas-to-Liquid Phase Transition of PAH at Flame Temperatures. Journal of Physical Chemistry A, 2020, 124, 3896-3903 Identification of volatile constituents released from IQOS heat-not-burn tobacco HeatSticks using a direct sampling method. Tobacco Control, 2020, Understanding the blending octane behaviour of unsaturated hydrocarbons: A case study of C4 molecules and comparison with toluene. Fuel, 2020, 275, 117971 Screening gas-phase chemical Kinetic models: Collision limit compliance and ultrafast timescales. International Journal of Chemical Kinetics, 2020, 52, 599-610 Laminar Burning Velocities and Kinetic Modeling of a Renewable E-Fuel: Formic Acid and Its Mixtures with H2 and CO2. Energy & amp; Fuels, 2020, 34, 7564-7572 A Systematic Theoretical Kinetics Analysis for the Waddington Mechanism in the Low-Temperature Oxidation of Butene and Butanol Isomers. Journal of Physical Chemistry A, 2020, 124, 5646-5656 Oxidation kinetics of n-pentanol: A theoretical study of the reactivity of the 1-hydroxy-1-peroxypentyl radical. Combustion and Flame, 2020, 219, 20-32 Investigating the Effects of C3 and C4 Alcohol Blending on Ignition Quality of Gasoline Fuels. Energy & amp; Fuels, 2020, 34, 8777-8787 Kinetics of the benzyl + HO and benzoxyl + OH barrierless association reactions: fate of the benzyl hydro	Combustion chemistry of ammonia/hydrogen mixtures: Jet-stirred reactor measurements and comprehensive kinetic modeling. Combustion and Flame, 2021, 234, 111653 Low-temperature oxidation chemistry of 2,4,4-trimethyl-1-pentene (diisobutylene) triggered by dimethyl ether (DME): A jet-stirred reactor oxidation and kinetic modeling investigation. Combustion and Flame, 2021, 234, 111629 Bio-oil and biochar production from halophyte biomass: effects of pre-treatment and temperature on Salicornia bigelovii pyrolysis. Sustainable Energy and Fuels, 2021, 5, 2234-2248 Laminar Burning Velocities of Formic Acid and Formic Acid/Hydrogen Flames: An Experimental and Modeling Study. Energy Amp. Fuels, 2021, 35, 1760-1767 Gas-to-Liquid Phase Transition of PAH at Flame Temperatures. Journal of Physical Chemistry A, 2020, 124, 3896-3903 Identification of volatile constituents released from IQOS heat-not-burn tobacco HeatSticks using a direct sampling method. Tobacco Control, 2020, Understanding the blending octane behaviour of unsaturated hydrocarbons: A case study of C4 molecules and comparison with toluene. Fuel, 2020, 275, 117971 Screening gas-phase chemical kinetic models: Collision limit compliance and ultrafast timescales. International Journal of Chemical Kinetics, 2020, 52, 599-610 Laminar Burning Velocities and Kinetic Modeling of a Renewable E-Fuel: Formic Acid and Its Mixtures with H2 and CO2. Energy Ramp; Fuels, 2020, 34, 7564-7572 A Systematic Theoretical Kinetics Analysis for the Waddington Mechanism in the Low-Temperature Oxidation of Butene and Butanol Isomers. Journal of Physical Chemistry A, 2020, 124, 5646-5656 Oxidation kinetics of repentanol: A theoretical study of the reactivity of the 1-hydroxy-1-peroxypentyl radical. Combustion and Flame, 2020, 219, 20-32 Investigating the Effects of C3 and C4 Alcohol Blending on Ignition Quality of Gasoline Fuels. Energy Ramp; Fuels, 2020, 34, 8777-8787 Kinetics of the benzyl + HO and benzoxyl + OH barrierless association reactions: fate of the benzyl Physics, 2	Combustion chemistry of ammonia/hydrogen mixtures: Jet-stirred reactor measurements and comprehensive kinetic modelling. Combustion and Flame, 2021, 234, 111653 Low-temperature oxidation chemistry of 2,4,4-trimethyl-1-pentene (diisobutylene) triggered by dimethyl ether (DME): A jet-stirred reactor oxidation and kinetic modeling investigation. Combustion and Flame, 2021, 234, 111629 Blo-oll and biochar production from halophyte biomass: effects of pre-treatment and temperature on Sallcornia bigelovil pyrolysis. Sustainable Energy and Fuels, 2021, 3, 2234-2248 Laminar Burning Velocities of Formic Acid and Formic Acid/Hydrogen Flames: An Experimental and Modeling Study. Energy & Description of PAH at Flame Temperatures. Journal of Physical Chemistry A, 2020, 1,124, 1396-3903 Identification of volatile constituents released from IQOS heat-not-burn tobacco HeatSticks using a direct sampling method. Tobacco Control, 2020. Understanding the blending octane behaviour of unsaturated hydrocarbons: A case study of C4 molecules and comparison with toluene. Fuel. 2020, 275, 117971 Screening gas-phase chemical kinetic models: Collision limit compliance and ultrafast timescales. International Journal of Chemical Kinetics, 2020, 527, 599-610 Laminar Burning Velocities and Kinetic Modeling of a Renewable E-Fuel: Formic Acid and Its Mixtures with H2 and CO2. Energy & Description of Burland of Physical Chemistry A, 2020, 124, 5646-5656 Oxidation kinetics of n-pentanol: A theoretical study of the reactivity of the 1-hydroxy-1-peroxypentyl radical. Combustion and Flame, 2020, 219, 20-32 Investigating the Effects of C3 and C4 Alcohol Blending on Ignition Quality of Gasoline Fuels. Energy & Description addition of Buttene and Buttanol Isomers. Journal of Physical Chemistry A, 2020, 124, 5646-5656 Autoignition of diethyl ether and a diethyl ether/ethanol blend. Fuel, 2020, 279, 21953 Enhanced Lubrication by core-shell TiO2 nanoparticles modified with gallic acid ester. Tribology International, 2020, 146, 106263 Spray comb

206	Chemical kinetics of hydroxyl reactions with cyclopentadiene and indene. <i>Combustion and Flame</i> , 2020 , 217, 48-56	5.3	6
205	CO2 Derived E-Fuels: Research Trends, Misconceptions, and Future Directions. <i>Trends in Chemistry</i> , 2020 , 2, 785-795	14.8	15
204	Analyzing the solid soot particulates formed in a fuel-rich flame by solvent-free matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , 2020 , 34, e8596	2.2	5
203	Developing a Theoretical Approach for Accurate Determination of the Density and Thermochemical Properties of Energetic Ionic Liquids. <i>Propellants, Explosives, Pyrotechnics</i> , 2020 , 45, 1949-1958	1.7	1
202	Cool flame chemistry of diesel surrogate compounds: n-Decane, 2-methylnonane, 2,7-dimethyloctane, and n-butylcyclohexane. <i>Combustion and Flame</i> , 2020 , 219, 384-392	5.3	5
201	Global sensitivity analysis of n-butanol ignition delay times to thermodynamics class and rate rule parameters. <i>Combustion and Flame</i> , 2020 , 222, 355-369	5.3	5
200	Probing hydrogenBitrogen chemistry: A theoretical study of important reactions in NxHy, HCN and HNCO oxidation. <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 23624-23637	6.7	9
199	Data Science Approach to Estimate Enthalpy of Formation of Cyclic Hydrocarbons. <i>Journal of Physical Chemistry A</i> , 2020 , 124, 6270-6276	2.8	7
198	Chemical and kinetic insights into fuel lubricity loss of low-sulfur diesel upon the addition of multiple oxygenated compounds. <i>Tribology International</i> , 2020 , 152, 106559	4.9	7
197	Investigating Water Injection in Single-Cylinder Gasoline Spark-Ignited Engines at Fixed Speed. <i>Energy & Energy & Energ</i>	4.1	3
196	Exploring low temperature oxidation of 1-butene in jet-stirred reactors. <i>Combustion and Flame</i> , 2020 , 222, 259-271	5.3	5
195	Effects of fuel composition variability on high temperature combustion properties: A statistical analysis. <i>Applications in Energy and Combustion Science</i> , 2020 , 1-4, 100012	0.8	О
194	Techno-Economic Analysis of Pressurized Oxy-Fuel Combustion of Petroleum Coke. <i>Energies</i> , 2020 , 13, 3463	3.1	8
193	Multi-stage heat release in lean combustion: Insights from coupled tangential stretching rate (TSR) and computational singular perturbation (CSP) analysis. <i>Combustion and Flame</i> , 2020 , 219, 242-257	5.3	5
192	Collision Efficiency Parameter Influence on Pressure-Dependent Rate Constant Calculations Using the SS-QRRK Theory. <i>Journal of Physical Chemistry A</i> , 2020 , 124, 6277-6286	2.8	5
191	Ignition delay time measurements of diesel and gasoline blends. <i>Combustion and Flame</i> , 2020 , 222, 460-	-45755	5
190	A droplet reactor on a super-hydrophobic surface allows control and characterization of amyloid fibril growth. <i>Communications Biology</i> , 2020 , 3, 457	6.7	6
189	Fuel and Chemical Properties of Waste Tire Pyrolysis Oil Derived from a Continuous Twin-Auger Reactor. <i>Energy & Design Reactor</i> 2020, 34, 12688-12702	4.1	20

(2019-2020)

188	Impact of OH Radical Generator Involvement in the Gas-Phase Radical Reaction Network on the Oxidative Coupling of Methane Simulation Study. <i>Energy Technology</i> , 2020 , 8, 1900563	3.5	7
187	Bridging the gap in a resource and climate-constrained world with advanced gasoline compression-ignition hybrids. <i>Applied Energy</i> , 2020 , 267, 114936	10.7	18
186	Machine Learning To Predict Standard Enthalpy of Formation of Hydrocarbons. <i>Journal of Physical Chemistry A</i> , 2019 , 123, 8305-8313	2.8	22
185	Exploring the combustion chemistry of a novel lignocellulose-derived biofuel: cyclopentanol. Part I: quantum chemistry calculation and kinetic modeling. <i>Combustion and Flame</i> , 2019 , 210, 490-501	5.3	12
184	Chemical Ignition Characteristics of Ethanol Blending with Primary Reference Fuels. <i>Energy & Energy &</i>	4.1	20
183	Chemical kinetic study of triptane (2,2,3-trimethylbutane) as an anti-knock additive. <i>Combustion and Flame</i> , 2019 , 210, 399-412	5.3	1
182	The influence of chemical composition on ignition delay times of gasoline fractions. <i>Combustion and Flame</i> , 2019 , 209, 418-429	5.3	16
181	Ethanolic gasoline, a lignocellulosic advanced biofuel. Sustainable Energy and Fuels, 2019, 3, 409-421	5.8	8
180	Ion chemistry in premixed rich methane flames. Combustion and Flame, 2019, 202, 208-218	5.3	16
179	Characterization of deasphalted heavy fuel oil using APPI (+) FT-ICR mass spectrometry and NMR spectroscopy. <i>Fuel</i> , 2019 , 253, 950-963	7.1	29
178	Autoignition Characteristics of Ethers Blended with Low Cetane Distillates. <i>Energy & amp; Fuels</i> , 2019 , 33, 6775-6787	4.1	8
177	Experimental and numerical investigations on the laminar burning velocity of n-butanol + air mixtures at elevated temperatures. <i>Fuel</i> , 2019 , 249, 36-44	7.1	8
176	Development of a reduced four-component (toluene/n-heptane/iso-octane/ethanol) gasoline surrogate model. <i>Fuel</i> , 2019 , 247, 164-178	7.1	33
175	On the opposing effects of methanol and ethanol addition on PAH and soot formation in ethylene counterflow diffusion flames. <i>Combustion and Flame</i> , 2019 , 202, 228-242	5.3	55
174	Computational study of polycyclic aromatic hydrocarbons growth by vinylacetylene addition. <i>Combustion and Flame</i> , 2019 , 202, 276-291	5.3	31
173	Methylcyclohexane pyrolysis and oxidation in a jet-stirred reactor. <i>Proceedings of the Combustion Institute</i> , 2019 , 37, 409-417	5.9	22
172	Polycyclic aromatic hydrocarbons in pyrolysis of gasoline surrogates (n-heptane/iso-octane/toluene). <i>Proceedings of the Combustion Institute</i> , 2019 , 37, 993-1001	5.9	33
171	Small ester combustion chemistry: Computational kinetics and experimental study of methyl acetate and ethyl acetate. <i>Proceedings of the Combustion Institute</i> , 2019 , 37, 419-428	5.9	27

170	Evolution of oxygenated polycyclic aromatic hydrocarbon chemistry at flame temperatures. <i>Combustion and Flame</i> , 2019 , 209, 441-451	5.3	21
169	Environmental Challenges and Opportunities in Marine Engine Heavy Fuel Oil Combustion. <i>Lecture Notes in Civil Engineering</i> , 2019 , 1047-1055	0.3	6
168	Computational singular perturbation analysis of brain lactate metabolism. <i>PLoS ONE</i> , 2019 , 14, e02260)94 .7	7
167	Oxidative-Coupling-Assisted Methane Aromatization: A Simulation Study. <i>Industrial & amp;</i> Engineering Chemistry Research, 2019 , 58, 22884-22892	3.9	4
166	Auto-ignition of direct injection spray of light naphtha, primary reference fuels, gasoline and gasoline surrogate. <i>Energy</i> , 2019 , 170, 375-390	7.9	15
165	Three-stage heat release in n-heptane auto-ignition. <i>Proceedings of the Combustion Institute</i> , 2019 , 37, 485-492	5.9	31
164	Low temperature autoignition of 5-membered ring naphthenes: Effects of substitution. <i>Combustion and Flame</i> , 2019 , 200, 387-404	5.3	21
163	The site effect on PAHs formation in HACA-based mass growth process. <i>Combustion and Flame</i> , 2019 , 199, 54-68	5.3	48
162	Surrogate formulation for diesel and jet fuels using the minimalist functional group (MFG) approach. <i>Proceedings of the Combustion Institute</i> , 2019 , 37, 4663-4671	5.9	28
161	Exploring gasoline oxidation chemistry in jet stirred reactors. <i>Fuel</i> , 2019 , 236, 1282-1292	7.1	29
160	Measurement of laminar burning velocity of n-pentanol + air mixtures at elevated temperatures and a skeletal kinetic model. <i>Fuel</i> , 2019 , 237, 10-17	7.1	15
159	A comparative study on the sooting tendencies of various 1-alkene fuels in counterflow diffusion flames. <i>Combustion and Flame</i> , 2018 , 192, 71-85	5.3	27
158	High-Pressure Limit Rate Rules for & Isomerization of Hydroperoxyalkylperoxy Radicals. <i>Journal of Physical Chemistry A</i> , 2018 , 122, 3626-3639	2.8	14
157	Impact of thermodynamic properties and heat loss on ignition of transportation fuels in rapid compression machines. <i>Fuel</i> , 2018 , 218, 203-212	7.1	3
156	Predicting Octane Number Using Nuclear Magnetic Resonance Spectroscopy and Artificial Neural Networks. <i>Energy & Documents</i> , 2018, 32, 6309-6329	4.1	68
155	2-Methylfuran: A bio-derived octane booster for spark-ignition engines. <i>Fuel</i> , 2018 , 225, 349-357	7.1	20
154	A minimalist functional group (MFG) approach for surrogate fuel formulation. <i>Combustion and Flame</i> , 2018 , 192, 250-271	5.3	47
153	Cool diffusion flames of butane isomers activated by ozone in the counterflow. <i>Combustion and Flame</i> , 2018 , 191, 175-186	5.3	16

152	Ab initio and transition state theory study of the OH + HO -rHO + O())O() reactions: yield and role of O() in HO decomposition and in combustion of H. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 4478	4489	18
151	Theoretical kinetic study of the formic acid catalyzed Criegee intermediate isomerization: multistructural anharmonicity and atmospheric implications. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 10806-10814	3.6	19
150	CH4/air homogeneous autoignition: A comparison of two chemical kinetics mechanisms. <i>Fuel</i> , 2018 , 223, 74-85	7.1	19
149	A surrogate fuel formulation to characterize heating and evaporation of light naphtha droplets. <i>Combustion Science and Technology</i> , 2018 , 190, 1218-1231	1.5	9
148	Theoretical Kinetic Study of the Unimolecular Keto-Enol Tautomerism Propen-2-ol <-rAcetone. Pressure Effects and Implications in the Pyrolysis of tert- and 2-Butanol. <i>Journal of Physical Chemistry A</i> , 2018 , 122, 3547-3555	2.8	15
147	Chemical kinetic insights into the ignition dynamics of n-hexane. <i>Combustion and Flame</i> , 2018 , 188, 28-4	0 5.3	32
146	n-Heptane cool flame chemistry: Unraveling intermediate species measured in a stirred reactor and motored engine. <i>Combustion and Flame</i> , 2018 , 187, 199-216	5.3	47
145	Chemical Kinetic Modeling Study on the Influence of n-Butanol Blending on the Combustion, Autoignition, and Knock Properties of Gasoline and Its Surrogate in a Spark-Ignition Engine. <i>Energy & Energy Energy</i> 8.2, 10065-10077	4.1	3
144	Lube Products: Molecular Characterization of Base Oils 2018 , 1-14		5
143	Global sensitivity analysis of n-butanol reaction kinetics using rate rules. <i>Combustion and Flame</i> , 2018 , 196, 452-465	5.3	13
142	Computational Kinetics of Hydroperoxybutylperoxy Isomerizations and Decompositions: A Study of the Effect of Hydrogen Bonding. <i>Journal of Physical Chemistry A</i> , 2018 , 122, 6277-6291	2.8	6
141	Extensive Theoretical Study of the Thermochemical Properties of Unsaturated Hydrocarbons and Allylic and Super-Allylic Radicals: The Development and Optimization of Group Additivity Values. <i>Journal of Physical Chemistry A</i> , 2018 , 122, 4736-4749	2.8	21
140	Autoignition of straight-run naphtha: A promising fuel for advanced compression ignition engines. <i>Combustion and Flame</i> , 2018 , 189, 337-346	5.3	20
139	Numerical investigation of injector geometry effects on fuel stratification in a GCI engine. <i>Fuel</i> , 2018 , 214, 580-589	7.1	35
138	Recent progress in gasoline surrogate fuels. <i>Progress in Energy and Combustion Science</i> , 2018 , 65, 67-108	833.6	215
137	Estimating fuel octane numbers from homogeneous gas-phase ignition delay times. <i>Combustion and Flame</i> , 2018 , 188, 307-323	5.3	28
136	Ab Initio, Transition State Theory, and Kinetic Modeling Study of the HO-Assisted Keto-Enol Tautomerism Propen-2-ol + HO < q Acetone + HO under Combustion, Atmospheric, and Interstellar Conditions. <i>Journal of Physical Chemistry A</i> , 2018 , 122, 9792-9805	2.8	12
135	Effectiveness of Fuel Enrichment on Knock Suppression in a Gasoline Spark-Ignited Engine 2018,		9

134	Effect of Mixture Formation and Injection Strategies on Stochastic Pre-Ignition 2018,		14
133	Reduced Gasoline Surrogate (Toluene/n-Heptane/iso-Octane) Chemical Kinetic Model for Compression Ignition Simulations 2018 ,		10
132	The Influence of Intake Pressure and Ethanol Addition to Gasoline on Single- and Dual-Stage Autoignition in an HCCI Engine. <i>Energy & Energy & Society</i> 2018, 32, 9822-9837	4.1	5
131	An experimental and chemical kinetic modeling study of 1,3-butadiene combustion: Ignition delay time and laminar flame speed measurements. <i>Combustion and Flame</i> , 2018 , 197, 423-438	5.3	240
130	Automated chemical kinetic mechanism simplification with minimal user expertise. <i>Combustion and Flame</i> , 2018 , 197, 439-448	5.3	13
129	Analysis of the current loltage curves and saturation currents in burner-stabilised premixed flames with detailed ion chemistry and transport models. <i>Combustion Theory and Modelling</i> , 2018 , 22, 939-972	1.5	8
128	Ignition delay time sensitivity in ignition quality tester (IQT) and its relation to octane sensitivity. <i>Fuel</i> , 2018 , 233, 412-419	7.1	15
127	Oxidation of 2-methylfuran and 2-methylfuran/n-heptane blends: An experimental and modeling study. <i>Combustion and Flame</i> , 2018 , 196, 54-70	5.3	25
126	New insights into methane-oxygen ion chemistry. <i>Proceedings of the Combustion Institute</i> , 2017 , 36, 121	3 5 .1922	1 22
125	Variations in non-thermal NO formation pathways in alcohol flames. <i>Proceedings of the Combustion Institute</i> , 2017 , 36, 3995-4002	5.9	11
124	Impact of fuel molecular structure on auto-ignition behavior Design rules for future high performance gasolines. <i>Progress in Energy and Combustion Science</i> , 2017 , 60, 1-25	33.6	117
123	Premixed flame chemistry of a gasoline primary reference fuel surrogate. <i>Combustion and Flame</i> , 2017 , 179, 300-311	5.3	11
122	Chemical Kinetic Insights into the Octane Number and Octane Sensitivity of Gasoline Surrogate Mixtures. <i>Energy & Company Fuels</i> , 2017 , 31, 1945-1960	4.1	77
121	A comprehensive iso-octane combustion model with improved thermochemistry and chemical kinetics. <i>Combustion and Flame</i> , 2017 , 178, 111-134	5.3	130
120	Compositional effects on PAH and soot formation in counterflow diffusion flames of gasoline surrogate fuels. <i>Combustion and Flame</i> , 2017 , 178, 46-60	5.3	69
119	An extensive experimental and modeling study of 1-butene oxidation. <i>Combustion and Flame</i> , 2017 , 181, 198-213	5.3	57
118	Cyclopentane combustion. Part II. Ignition delay measurements and mechanism validation. <i>Combustion and Flame</i> , 2017 , 183, 372-385	5.3	36
117	High temperature shock tube experiments and kinetic modeling study of diisopropyl ketone ignition and pyrolysis. <i>Combustion and Flame</i> , 2017 , 177, 207-218	5.3	20

116	Quantities of Interest in Jet Stirred Reactor Oxidation of a High-Octane Gasoline. <i>Energy & amp; Fuels</i> , 2017 , 31, 5543-5553	4.1	16
115	Achieving 80% greenhouse gas reduction target in Saudi Arabia under low and medium oil prices. <i>Energy Policy</i> , 2017 , 101, 502-511	7.2	11
114	Heavy fuel oil pyrolysis and combustion: Kinetics and evolved gases investigated by TGA-FTIR. Journal of Analytical and Applied Pyrolysis, 2017 , 127, 183-195	6	48
113	Theoretical Kinetics Analysis for H Atom Addition to 1,3-Butadiene and Related Reactions on the ℍ Potential Energy Surface. <i>Journal of Physical Chemistry A</i> , 2017 , 121, 7433-7445	2.8	34
112	Optimizing Blendstock Composition and Ethanol Feedstock to Reduce Gasoline Well-to-Pump CO 2 Emission. <i>Energy Procedia</i> , 2017 , 105, 3642-3647	2.3	1
111	Optimization of the octane response of gasoline/ethanol blends. <i>Applied Energy</i> , 2017 , 203, 778-793	10.7	51
110	On the effects of fuel properties and injection timing in partially premixed compression ignition of low octane fuels. <i>Fuel</i> , 2017 , 207, 373-388	7.1	32
109	Ignition studies of two low-octane gasolines. <i>Combustion and Flame</i> , 2017 , 185, 152-159	5.3	43
108	Autoignition characteristics of oxygenated gasolines. <i>Combustion and Flame</i> , 2017 , 186, 114-128	5.3	50
107	Unraveling the structure and chemical mechanisms of highly oxygenated intermediates in oxidation of organic compounds. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 13102-13107	11.5	80
106	Heats of Formation of Medium-Sized Organic Compounds from Contemporary Electronic Structure Methods. <i>Journal of Chemical Theory and Computation</i> , 2017 , 13, 3537-3560	6.4	29
105	Integrated In Situ Characterization of a Molten Salt Catalyst Surface: Evidence of Sodium Peroxide and Hydroxyl Radical Formation. <i>Angewandte Chemie</i> , 2017 , 129, 10539-10543	3.6	11
104	Integrated In Situ Characterization of a Molten Salt Catalyst Surface: Evidence of Sodium Peroxide and Hydroxyl Radical Formation. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 10403-10407	16.4	36
103	Cyclopentane combustion chemistry. Part I: Mechanism development and computational kinetics. <i>Combustion and Flame</i> , 2017 , 183, 358-371	5.3	38
102	Performance and emissions of gasoline blended with terpineol as an octane booster. <i>Renewable Energy</i> , 2017 , 101, 1087-1093	8.1	26
101	Ignition characteristics of 2-methyltetrahydrofuran: An experimental and kinetic study. <i>Proceedings of the Combustion Institute</i> , 2017 , 36, 587-595	5.9	24
100	Aromatic ring formation in opposed-flow diffusive 1,3-butadiene flames. <i>Proceedings of the Combustion Institute</i> , 2017 , 36, 947-955	5.9	30
99	Understanding premixed flame chemistry of gasoline fuels by comparing quantities of interest. <i>Proceedings of the Combustion Institute</i> , 2017 , 36, 1203-1211	5.9	12

98	Antiknock quality and ignition kinetics of 2-phenylethanol, a novel lignocellulosic octane booster. <i>Proceedings of the Combustion Institute</i> , 2017 , 36, 3515-3522	5.9	15
97	New insights into the low-temperature oxidation of 2-methylhexane. <i>Proceedings of the Combustion Institute</i> , 2017 , 36, 373-382	5.9	30
96	The influence of n -butanol blending on the ignition delay times of gasoline and its surrogate at high pressures. <i>Fuel</i> , 2017 , 187, 211-219	7.1	25
95	Measurements of Positively Charged Ions in Premixed Methane-Oxygen Atmospheric Flames. <i>Combustion Science and Technology</i> , 2017 , 189, 575-594	1.5	10
94	Jet-stirred reactor oxidation of alkane-rich FACE gasoline fuels. <i>Proceedings of the Combustion Institute</i> , 2017 , 36, 517-524	5.9	23
93	The oxidation of 2-butene: A high pressure ignition delay, kinetic modeling study and reactivity comparison with isobutene and 1-butene. <i>Proceedings of the Combustion Institute</i> , 2017 , 36, 403-411	5.9	268
92	A laminar flame investigation of 2-butanone, and the combustion-related intermediates formed through its oxidation. <i>Proceedings of the Combustion Institute</i> , 2017 , 36, 1175-1183	5.9	17
91	Elucidating reactivity regimes in cyclopentane oxidation: Jet stirred reactor experiments, computational chemistry, and kinetic modeling. <i>Proceedings of the Combustion Institute</i> , 2017 , 36, 469-	4 <i>7</i> 77 ⁹	27
90	Ignition delay measurements of light naphtha: A fully blended low octane fuel. <i>Proceedings of the Combustion Institute</i> , 2017 , 36, 315-322	5.9	44
89	Terpineol as a novel octane booster for extending the knock limit of gasoline. <i>Fuel</i> , 2017 , 187, 9-15	7.1	24
89 88	Terpineol as a novel octane booster for extending the knock limit of gasoline. <i>Fuel</i> , 2017 , 187, 9-15 Blending Behavior of Ethanol with PRF 84 and FACE A Gasoline in HCCI Combustion Mmode 2017 ,	7.1	24
		7.1	
88	Blending Behavior of Ethanol with PRF 84 and FACE A Gasoline in HCCI Combustion Mmode 2017 ,	7.1	8
88 8 ₇	Blending Behavior of Ethanol with PRF 84 and FACE A Gasoline in HCCI Combustion Mmode 2017, Simulating HCCI Blending Octane Number of Primary Reference Fuel with Ethanol 2017, Improved combustion kinetic model and HCCI engine simulations of di-isopropyl ketone ignition.	7.1	8 17 20
88 87 86	Blending Behavior of Ethanol with PRF 84 and FACE A Gasoline in HCCI Combustion Mmode 2017, Simulating HCCI Blending Octane Number of Primary Reference Fuel with Ethanol 2017, Improved combustion kinetic model and HCCI engine simulations of di-isopropyl ketone ignition. Fuel, 2016, 164, 141-150	7.1	8 17 20
88 87 86 85	Blending Behavior of Ethanol with PRF 84 and FACE A Gasoline in HCCI Combustion Mmode 2017, Simulating HCCI Blending Octane Number of Primary Reference Fuel with Ethanol 2017, Improved combustion kinetic model and HCCI engine simulations of di-isopropyl ketone ignition. Fuel, 2016, 164, 141-150 Lifecycle optimized ethanol-gasoline blends for turbocharged engines. Applied Energy, 2016, 181, 38-5 Predicting Fuel Ignition Quality Using 1H NMR Spectroscopy and Multiple Linear Regression. Energy	7.1 3 10.7	8 17 20 35
88 87 86 85 84	Blending Behavior of Ethanol with PRF 84 and FACE A Gasoline in HCCI Combustion Mmode 2017, Simulating HCCI Blending Octane Number of Primary Reference Fuel with Ethanol 2017, Improved combustion kinetic model and HCCI engine simulations of di-isopropyl ketone ignition. Fuel, 2016, 164, 141-150 Lifecycle optimized ethanol-gasoline blends for turbocharged engines. Applied Energy, 2016, 181, 38-5 Predicting Fuel Ignition Quality Using 1H NMR Spectroscopy and Multiple Linear Regression. Energy & 2016, 30, 9819-9835 Experimental and Chemical Kinetic Modeling Study of Dimethylcyclohexane Oxidation and	7.1 3 10.7 4.1	8 17 20 35 60

80	A blending rule for octane numbers of PRFs and TPRFs with ethanol. Fuel, 2016, 180, 175-186	7.1	54
79	A computational study of ethylenellir sooting flames: Effects of large polycyclic aromatic hydrocarbons. <i>Combustion and Flame</i> , 2016 , 163, 427-436	5.3	39
78	A comprehensive experimental and modeling study of isobutene oxidation. <i>Combustion and Flame</i> , 2016 , 167, 353-379	5.3	220
77	Modeling Ignition of a Heptane Isomer: Improved Thermodynamics, Reaction Pathways, Kinetics, and Rate Rule Optimizations for 2-Methylhexane. <i>Journal of Physical Chemistry A</i> , 2016 , 120, 2201-17	2.8	43
76	Additional chain-branching pathways in the low-temperature oxidation of branched alkanes. <i>Combustion and Flame</i> , 2016 , 164, 386-396	5.3	72
75	Compositional Effects of Gasoline Fuels on Combustion, Performance and Emissions in Engine. <i>SAE International Journal of Fuels and Lubricants</i> , 2016 , 9, 460-468	1.8	13
74	Blending Octane Number of Ethanol in HCCI, SI and CI Combustion Modes. <i>SAE International Journal of Fuels and Lubricants</i> , 2016 , 9, 659-682	1.8	37
73	⊕inene - A High Energy Density Biofuel for SI Engine Applications 2016 ,		8
72	Experimental and Numerical Investigation of Ethanol/Diethyl Ether Mixtures in a CI Engine 2016,		13
71	Mixing-structure relationship in jet-stirred reactors. <i>Chemical Engineering Research and Design</i> , 2016 , 111, 461-464	5.5	15
70	Third O2 addition reactions promote the low-temperature auto-ignition of n-alkanes. <i>Combustion and Flame</i> , 2016 , 165, 364-372	5.3	55
69	Calculation of Average Molecular Parameters, Functional Groups, and a Surrogate Molecule for Heavy Fuel Oils Using 1H and 13C Nuclear Magnetic Resonance Spectroscopy. <i>Energy & Dies,</i> 2016, 30, 3894-3905	4.1	55
68	Compositional effects on the ignition of FACE gasolines. <i>Combustion and Flame</i> , 2016 , 169, 171-193	5.3	139
67	Fuel Class Higher Alcohols 2016 , 29-57		5
66	Two-stage Lagrangian modeling of ignition processes in ignition quality tester and constant volume combustion chambers. <i>Fuel</i> , 2016 , 185, 589-598	7.1	12
65	Optimized reaction mechanism rate rules for ignition of normal alkanes. <i>Combustion and Flame</i> , 2016 , 173, 468-482	5.3	96
64	An experimental and modeling study of diethyl carbonate oxidation. <i>Combustion and Flame</i> , 2015 , 162, 1395-1405	5.3	20
63	Shock tube and modeling study of 2,7-dimethyloctane pyrolysis and oxidation. <i>Combustion and Flame</i> , 2015 , 162, 2296-2306	5.3	14

62	Analysis of impact of temperature and saltwater on Nannochloropsis salina bio-oil production by ultra high resolution APCI FT-ICR MS. <i>Algal Research</i> , 2015 , 9, 227-235	5	20
61	A comprehensive experimental and modeling study of 2-methylbutanol combustion. <i>Combustion and Flame</i> , 2015 , 162, 2166-2176	5.3	28
60	Kinetics of ethylcyclohexane pyrolysis and oxidation: An experimental and detailed kinetic modeling study. <i>Combustion and Flame</i> , 2015 , 162, 2873-2892	5.3	47
59	Experiments and simulations of NOx formation in the combustion of hydroxylated fuels. <i>Combustion and Flame</i> , 2015 , 162, 2322-2336	5.3	13
58	Structural Level Characterization of Base Oils Using Advanced Analytical Techniques. <i>Energy & Energy </i>	4.1	41
57	Effect of the Methyl Substitution on the Combustion of Two Methylheptane Isomers: Flame Chemistry Using Vacuum-Ultraviolet (VUV) Photoionization Mass Spectrometry. <i>Energy & amp; Fuels</i> , 2015, 29, 2696-2708	4.1	7
56	Numerical modelling of ion transport in flames. Combustion Theory and Modelling, 2015, 19, 744-772	1.5	16
55	Combustion Characteristics of C5 Alcohols and a Skeletal Mechanism for Homogeneous Charge Compression Ignition Combustion Simulation. <i>Energy & Energy & Ene</i>	4.1	18
54	Mixed butanols addition to gasoline surrogates: Shock tube ignition delay time measurements and chemical kinetic modeling. <i>Combustion and Flame</i> , 2015 , 162, 3971-3979	5.3	30
53	A methodology to relate octane numbers of binary and ternary n-heptane, iso-octane and toluene mixtures with simulated ignition delay times. <i>Fuel</i> , 2015 , 160, 458-469	7.1	67
52	A fundamental investigation into the relationship between lubricant composition and fuel ignition quality. <i>Fuel</i> , 2015 , 160, 605-613	7.1	30
51	TG/DTG, FT-ICR Mass Spectrometry, and NMR Spectroscopy Study of Heavy Fuel Oil. <i>Energy & Enels</i> , 2015 , 29, 7825-7835	4.1	62
50	A computational methodology for formulating gasoline surrogate fuels with accurate physical and chemical kinetic properties. <i>Fuel</i> , 2015 , 143, 290-300	7.1	112
49	Stabilization and structure of n-heptane tribrachial flames in axisymmetric laminar jets. <i>Proceedings of the Combustion Institute</i> , 2015 , 35, 1023-1032	5.9	5
48	An experimental and modeling study of n-octanol combustion. <i>Proceedings of the Combustion Institute</i> , 2015 , 35, 419-427	5.9	72
47	Kinetics of the high-temperature combustion reactions of dibutylether using composite computational methods. <i>Proceedings of the Combustion Institute</i> , 2015 , 35, 385-392	5.9	16
46	Ignition of alkane-rich FACE gasoline fuels and their surrogate mixtures. <i>Proceedings of the Combustion Institute</i> , 2015 , 35, 249-257	5.9	124
45	Combustion chemistry of alcohols: Experimental and modeled structure of a premixed 2-methylbutanol flame. <i>Proceedings of the Combustion Institute</i> , 2015 , 35, 813-820	5.9	16

(2013-2015)

44	Prospects of 2,5-dimethylfuran as a fuel: physico-chemical and engine performance characteristics evaluation. <i>Journal of Material Cycles and Waste Management</i> , 2015 , 17, 459-464	3.4	17
43	Detection and Identification of the Keto-Hydroperoxide (HOOCH2OCHO) and Other Intermediates during Low-Temperature Oxidation of Dimethyl Ether. <i>Journal of Physical Chemistry A</i> , 2015 , 119, 7361	-74 ⁸	111
42	Chemical kinetic study of a novel lignocellulosic biofuel: Di-n-butyl ether oxidation in a laminar flow reactor and flames. <i>Combustion and Flame</i> , 2014 , 161, 798-809	5.3	71
41	Intermediate temperature heat release in an HCCI engine fueled by ethanol/n-heptane mixtures: An experimental and modeling study. <i>Combustion and Flame</i> , 2014 , 161, 680-695	5.3	78
40	PAH growth initiated by propargyl addition: mechanism development and computational kinetics. Journal of Physical Chemistry A, 2014 , 118, 2865-85	2.8	58
39	Alcohol combustion chemistry. <i>Progress in Energy and Combustion Science</i> , 2014 , 44, 40-102	33.6	534
38	A comprehensive combustion chemistry study of 2,5-dimethylhexane. <i>Combustion and Flame</i> , 2014 , 161, 1444-1459	5.3	71
37	Development and validation of an n-dodecane skeletal mechanism for spray combustion applications. <i>Combustion Theory and Modelling</i> , 2014 , 18, 187-203	1.5	105
36	A counterflow diffusion flame study of branched octane isomers. <i>Proceedings of the Combustion Institute</i> , 2013 , 34, 1015-1023	5.9	39
35	On the High-Temperature Combustion of n-Butanol: Shock Tube Data and an Improved Kinetic Model. <i>Energy & Energy & Energ</i>	4.1	27
34	Detailed chemical kinetic modeling of the effects of CC double bonds on the ignition of biodiesel fuels. <i>Proceedings of the Combustion Institute</i> , 2013 , 34, 3049-3056	5.9	71
33	A comprehensive experimental and modeling study of iso-pentanol combustion. <i>Combustion and Flame</i> , 2013 , 160, 2712-2728	5.3	77
32	An experimental and modeling study investigating the ignition delay in a military diesel engine running hexadecane (cetane) fuel. <i>International Journal of Engine Research</i> , 2013 , 14, 57-67	2.7	9
31	Autoignition Characterization of Primary Reference Fuels and n-Heptane/n-Butanol Mixtures in a Constant Volume Combustion Device and Homogeneous Charge Compression Ignition Engine. <i>Energy & Energy & Compression Ignition Engine</i> .	4.1	33
30	Jet-stirred reactor and flame studies of propanal oxidation. <i>Proceedings of the Combustion Institute</i> , 2013 , 34, 599-606	5.9	33
29	An experimental and modeling study of the autoignition of 3-methylheptane. <i>Proceedings of the Combustion Institute</i> , 2013 , 34, 335-343	5.9	29
28	Experimental and modeling study of the oxidation of n- and iso-butanal. <i>Combustion and Flame</i> , 2013 , 160, 1609-1626	5.3	33
27	Computational study of the combustion and atmospheric decomposition of 2-methylfuran. <i>Journal of Physical Chemistry A</i> , 2013 , 117, 7670-85	2.8	46

26	Ignition of non-premixed counterflow flames of octane and decane isomers. <i>Proceedings of the Combustion Institute</i> , 2013 , 34, 903-910	5.9	26
25	CloudFlame: Cyberinfrastructure for Combustion Research 2013,		7
24	Atmospheric pressure chemical ionization Fourier transform ion cyclotron resonance mass spectrometry for complex thiophenic mixture analysis. <i>Rapid Communications in Mass Spectrometry</i> , 2013 , 27, 2432-8	2.2	20
23	Modeling the combustion of high molecular weight fuels by a functional group approach. <i>International Journal of Chemical Kinetics</i> , 2012 , 44, 257-276	1.4	19
22	Experimental and Kinetic Modeling Study of 3-Methylheptane in a Jet-Stirred Reactor. <i>Energy & Emp; Fuels</i> , 2012 , 26, 4680-4689	4.1	24
21	Detailed Kinetic Modeling Study of n-Pentanol Oxidation. <i>Energy & Detailed Kinetic Modeling Study of n-Pentanol Oxidation</i> . <i>Energy & Detailed Kinetic Modeling Study of n-Pentanol Oxidation</i> . <i>Energy & Detailed Kinetic Modeling Study of n-Pentanol Oxidation</i> . <i>Energy & Detailed Kinetic Modeling Study of n-Pentanol Oxidation</i> . <i>Energy & Detailed Kinetic Modeling Study of n-Pentanol Oxidation</i> . <i>Energy & Detailed Kinetic Modeling Study of n-Pentanol Oxidation</i> . <i>Energy & Detailed Kinetic Modeling Study of n-Pentanol Oxidation</i> . <i>Energy & Detailed Kinetic Modeling Study of n-Pentanol Oxidation</i> . <i>Energy & Detailed Kinetic Modeling Study of n-Pentanol Oxidation</i> . <i>Energy & Detailed Kinetic Modeling Study of n-Pentanol Oxidation</i> . <i>Energy & Detailed Kinetic Modeling Study of n-Pentanol Oxidation</i> . <i>Energy & Detailed Kinetic Modeling Study of n-Pentanol Oxidation</i> . <i>Energy & Detailed Kinetic Modeling Study of n-Pentanol Oxidation</i> . <i>Energy & Detailed Kinetic Modeling Study of n-Pentanol Oxidation</i> . <i>Energy & Detailed Kinetic Modeling Study of n-Pentanol Oxidation</i> . <i>Energy & Detailed Kinetic Modeling Study of n-Pentanol Oxidation</i> . <i>Energy & Detailed Kinetic Modeling Study of n-Pentanol Oxidation</i> . <i>Energy & Detailed Kinetic Modeling Study of n-Pentanol Oxidation</i> . <i>Energy & Detailed Kinetic Modeling Study of n-Pentanol Oxidation</i> . <i>Energy & Detailed Kinetic Modeling Study of n-Pentanol Oxidation</i> . <i>Energy & Detailed Kinetic Modeling Study of n-Pentanol Oxidation</i> . <i>Energy & Detailed Kinetic Modeling Study of n-Pentanol Oxidation</i> . <i>Energy & Detailed Kinetic Modeling Study of n-Pentanol Oxidation</i> . <i>Energy & Detailed Kinetic Modeling Study Study of n-Pentanol Oxidation</i> . <i>Energy & Detailed Kinetic Modeling Study Stu</i>	4.1	84
20	A reduced mechanism for biodiesel surrogates for compression ignition engine applications. <i>Fuel</i> , 2012 , 99, 143-153	7.1	108
19	Effects of fuel branching on the propagation of octane isomers flames. <i>Combustion and Flame</i> , 2012 , 159, 1426-1436	5.3	79
18	A comprehensive chemical kinetic combustion model for the four butanol isomers. <i>Combustion and Flame</i> , 2012 , 159, 2028-2055	5.3	407
17	A shock tube and chemical kinetic modeling study of the pyrolysis and oxidation of butanols. <i>Combustion and Flame</i> , 2012 , 159, 2009-2027	5.3	79
16	Hydrotreated Renewable Jet Fuel Ignition Delay Performance in a Military Diesel Engine: An Experimental and Modeling Study 2012 ,		4
15	Comprehensive chemical kinetic modeling of the oxidation of 2-methylalkanes from C7 to C20. <i>Combustion and Flame</i> , 2011 , 158, 2338-2357	5.3	387
14	Experimental and kinetic modeling of methyl octanoate oxidation in an opposed-flow diffusion flame and a jet-stirred reactor. <i>Proceedings of the Combustion Institute</i> , 2011 , 33, 1037-1043	5.9	45
13	An Approach for Formulating Surrogates for Gasoline with Application toward a Reduced Surrogate Mechanism for CFD Engine Modeling. <i>Energy & Damp; Fuels</i> , 2011 , 25, 5215-5223	4.1	223
12	Detailed chemical kinetic reaction mechanisms for soy and rapeseed biodiesel fuels. <i>Combustion and Flame</i> , 2011 , 158, 742-755	5.3	206
11	An experimental and kinetic modeling study of n-octane and 2-methylheptane in an opposed-flow diffusion flame. <i>Combustion and Flame</i> , 2011 , 158, 1277-1287	5.3	40
10	An experimental and kinetic modeling study of methyl decanoate combustion. <i>Proceedings of the Combustion Institute</i> , 2011 , 33, 399-405	5.9	71
9	An experimental and kinetic modeling study of n-butanol combustion. <i>Combustion and Flame</i> , 2009 , 156, 852-864	5.3	253

LIST OF PUBLICATIONS

8	A chemical kinetic study of n-butanol oxidation at elevated pressure in a jet stirred reactor. Proceedings of the Combustion Institute, 2009 , 32, 229-237	5.9	189
7	Experimental and chemical kinetic modeling study of small methyl esters oxidation: Methyl (E)-2-butenoate and methyl butanoate. <i>Combustion and Flame</i> , 2008 , 155, 635-650	5.3	129
6	A wide-ranging kinetic modeling study of methyl butanoate combustion. <i>Proceedings of the Combustion Institute</i> , 2007 , 31, 305-311	5.9	201
5	A comparison of saturated and unsaturated C4 fatty acid methyl esters in an opposed flow diffusion flame and a jet stirred reactor. <i>Proceedings of the Combustion Institute</i> , 2007 , 31, 1015-1022	5.9	137
4	Effect of Different Fluids on Injection Strategies to Suppress Pre-Ignition		11
3	Knock, Auto-Ignition and Pre-Ignition Tendency of Fuels for Advanced Combustion Engines (FACE) with Ethanol Blends and Similar RON		1
2	Hydrogen Selective Catalytic Reduction of Nitrogen Oxide on Pt- and Pd-Based Catalysts for Lean-Burn Automobile Applications		1
1	Predicting Ignition Quality of Oxygenated Fuels Using Artificial Neural Networks. SAE International Journal of Fuels and Lubricants,14,	1.8	4