S Mani Sarathy

List of Publications by Citations

Source: https://exaly.com/author-pdf/4299236/s-mani-sarathy-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 277
papers
 9,768
citations
 49
h-index
 88
g-index

 288
ext. papers
 11,755
ext. citations
 5.8
avg, IF
 6.77
L-index

#	Paper	IF	Citations
277	Alcohol combustion chemistry. <i>Progress in Energy and Combustion Science</i> , 2014 , 44, 40-102	33.6	534
276	A comprehensive chemical kinetic combustion model for the four butanol isomers. <i>Combustion and Flame</i> , 2012 , 159, 2028-2055	5.3	407
275	Comprehensive chemical kinetic modeling of the oxidation of 2-methylalkanes from C7 to C20. <i>Combustion and Flame</i> , 2011 , 158, 2338-2357	5.3	387
274	The oxidation of 2-butene: A high pressure ignition delay, kinetic modeling study and reactivity comparison with isobutene and 1-butene. <i>Proceedings of the Combustion Institute</i> , 2017 , 36, 403-411	5.9	268
273	An experimental and kinetic modeling study of n-butanol combustion. <i>Combustion and Flame</i> , 2009 , 156, 852-864	5.3	253
272	An experimental and chemical kinetic modeling study of 1,3-butadiene combustion: Ignition delay time and laminar flame speed measurements. <i>Combustion and Flame</i> , 2018 , 197, 423-438	5.3	240
271	An Approach for Formulating Surrogates for Gasoline with Application toward a Reduced Surrogate Mechanism for CFD Engine Modeling. <i>Energy & Energy & Energy</i>	4.1	223
270	A comprehensive experimental and modeling study of isobutene oxidation. <i>Combustion and Flame</i> , 2016 , 167, 353-379	5.3	220
269	Recent progress in gasoline surrogate fuels. <i>Progress in Energy and Combustion Science</i> , 2018 , 65, 67-10	0833.6	215
268	Detailed chemical kinetic reaction mechanisms for soy and rapeseed biodiesel fuels. <i>Combustion and Flame</i> , 2011 , 158, 742-755	5.3	206
267	A wide-ranging kinetic modeling study of methyl butanoate combustion. <i>Proceedings of the Combustion Institute</i> , 2007 , 31, 305-311	5.9	201
266	A chemical kinetic study of n-butanol oxidation at elevated pressure in a jet stirred reactor. <i>Proceedings of the Combustion Institute</i> , 2009 , 32, 229-237	5.9	189
265	Compositional effects on the ignition of FACE gasolines. <i>Combustion and Flame</i> , 2016 , 169, 171-193	5.3	139
264	A comparison of saturated and unsaturated C4 fatty acid methyl esters in an opposed flow diffusion flame and a jet stirred reactor. <i>Proceedings of the Combustion Institute</i> , 2007 , 31, 1015-1022	5.9	137
263	A comprehensive iso-octane combustion model with improved thermochemistry and chemical kinetics. <i>Combustion and Flame</i> , 2017 , 178, 111-134	5.3	130
262	Experimental and chemical kinetic modeling study of small methyl esters oxidation: Methyl (E)-2-butenoate and methyl butanoate. <i>Combustion and Flame</i> , 2008 , 155, 635-650	5.3	129
261	Ignition of alkane-rich FACE gasoline fuels and their surrogate mixtures. <i>Proceedings of the Combustion Institute</i> , 2015 , 35, 249-257	5.9	124

(2013-2017)

260	Impact of fuel molecular structure on auto-ignition behavior IDesign rules for future high performance gasolines. <i>Progress in Energy and Combustion Science</i> , 2017 , 60, 1-25	33.6	117
259	A computational methodology for formulating gasoline surrogate fuels with accurate physical and chemical kinetic properties. <i>Fuel</i> , 2015 , 143, 290-300	7.1	112
258	Detection and Identification of the Keto-Hydroperoxide (HOOCH2OCHO) and Other Intermediates during Low-Temperature Oxidation of Dimethyl Ether. <i>Journal of Physical Chemistry A</i> , 2015 , 119, 7361-	·74 ⁸	111
257	A reduced mechanism for biodiesel surrogates for compression ignition engine applications. <i>Fuel</i> , 2012 , 99, 143-153	7.1	108
256	Development and validation of an n-dodecane skeletal mechanism for spray combustion applications. <i>Combustion Theory and Modelling</i> , 2014 , 18, 187-203	1.5	105
255	Optimized reaction mechanism rate rules for ignition of normal alkanes. <i>Combustion and Flame</i> , 2016 , 173, 468-482	5.3	96
254	Detailed Kinetic Modeling Study of n-Pentanol Oxidation. <i>Energy & Detailed Kinetic Modeling Study of n-Pentanol Oxidation</i> . <i>Energy & Detailed Kinetic Modeling Study of n-Pentanol Oxidation</i> . <i>Energy & Detailed Kinetic Modeling Study of n-Pentanol Oxidation</i> . <i>Energy & Detailed Kinetic Modeling Study of n-Pentanol Oxidation</i> . <i>Energy & Detailed Kinetic Modeling Study of n-Pentanol Oxidation</i> . <i>Energy & Detailed Kinetic Modeling Study of n-Pentanol Oxidation</i> . <i>Energy & Detailed Kinetic Modeling Study of n-Pentanol Oxidation</i> . <i>Energy & Detailed Kinetic Modeling Study of n-Pentanol Oxidation</i> . <i>Energy & Detailed Kinetic Modeling Study of n-Pentanol Oxidation</i> . <i>Energy & Detailed Kinetic Modeling Study of n-Pentanol Oxidation</i> . <i>Energy & Detailed Kinetic Modeling Study of n-Pentanol Oxidation</i> . <i>Energy & Detailed Kinetic Modeling Study of n-Pentanol Oxidation</i> . <i>Energy & Detailed Kinetic Modeling Study of n-Pentanol Oxidation</i> . <i>Energy & Detailed Kinetic Modeling Study of n-Pentanol Oxidation</i> . <i>Energy & Detailed Kinetic Modeling Study of n-Pentanol Oxidation</i> . <i>Energy & Detailed Kinetic Modeling Study of n-Pentanol Oxidation</i> . <i>Energy & Detailed Kinetic Modeling Study of n-Pentanol Oxidation</i> . <i>Energy & Detailed Kinetic Modeling Study of n-Pentanol Oxidation</i> . <i>Energy & Detailed Kinetic Modeling Study of n-Pentanol Oxidation</i> . <i>Energy & Detailed Kinetic Modeling Study of n-Pentanol Oxidation</i> . <i>Energy & Detailed Kinetic Modeling Study of n-Pentanol Oxidation</i> . <i>Energy & Detailed Kinetic Modeling Study of n-Pentanol Oxidation</i> . <i>Energy & Detailed Kinetic Modeling Study of n-Pentanol Oxidation</i> . <i>Energy & Detailed Kinetic Modeling Study Study of n-Pentanol Oxidation</i> . <i>Energy & Detailed Kinetic Modeling Study Stu</i>	4.1	84
253	Unraveling the structure and chemical mechanisms of highly oxygenated intermediates in oxidation of organic compounds. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 13102-13107	11.5	80
252	Effects of fuel branching on the propagation of octane isomers flames. <i>Combustion and Flame</i> , 2012 , 159, 1426-1436	5.3	79
251	A shock tube and chemical kinetic modeling study of the pyrolysis and oxidation of butanols. <i>Combustion and Flame</i> , 2012 , 159, 2009-2027	5.3	79
250	Intermediate temperature heat release in an HCCI engine fueled by ethanol/n-heptane mixtures: An experimental and modeling study. <i>Combustion and Flame</i> , 2014 , 161, 680-695	5.3	78
249	Chemical Kinetic Insights into the Octane Number and Octane Sensitivity of Gasoline Surrogate Mixtures. <i>Energy & Comp.; Fuels</i> , 2017 , 31, 1945-1960	4.1	77
248	A comprehensive experimental and modeling study of iso-pentanol combustion. <i>Combustion and Flame</i> , 2013 , 160, 2712-2728	5.3	77
247	An experimental and modeling study of n-octanol combustion. <i>Proceedings of the Combustion Institute</i> , 2015 , 35, 419-427	5.9	72
246	Additional chain-branching pathways in the low-temperature oxidation of branched alkanes. <i>Combustion and Flame</i> , 2016 , 164, 386-396	5.3	72
245	Chemical kinetic study of a novel lignocellulosic biofuel: Di-n-butyl ether oxidation in a laminar flow reactor and flames. <i>Combustion and Flame</i> , 2014 , 161, 798-809	5.3	71
244	A comprehensive combustion chemistry study of 2,5-dimethylhexane. <i>Combustion and Flame</i> , 2014 , 161, 1444-1459	5.3	71
243	Detailed chemical kinetic modeling of the effects of CC double bonds on the ignition of biodiesel fuels. <i>Proceedings of the Combustion Institute</i> , 2013 , 34, 3049-3056	5.9	71

242	An experimental and kinetic modeling study of methyl decanoate combustion. <i>Proceedings of the Combustion Institute</i> , 2011 , 33, 399-405	5.9	71
241	Compositional effects on PAH and soot formation in counterflow diffusion flames of gasoline surrogate fuels. <i>Combustion and Flame</i> , 2017 , 178, 46-60	5.3	69
240	Predicting Octane Number Using Nuclear Magnetic Resonance Spectroscopy and Artificial Neural Networks. <i>Energy & Description</i> 8, 2018, 32, 6309-6329	4.1	68
239	A methodology to relate octane numbers of binary and ternary n-heptane, iso-octane and toluene mixtures with simulated ignition delay times. <i>Fuel</i> , 2015 , 160, 458-469	7.1	67
238	TG/DTG, FT-ICR Mass Spectrometry, and NMR Spectroscopy Study of Heavy Fuel Oil. <i>Energy & Enels</i> , 2015 , 29, 7825-7835	4.1	62
237	Predicting Fuel Ignition Quality Using 1H NMR Spectroscopy and Multiple Linear Regression. <i>Energy & Energy Energy</i>	4.1	60
236	PAH growth initiated by propargyl addition: mechanism development and computational kinetics. Journal of Physical Chemistry A, 2014 , 118, 2865-85	2.8	58
235	An extensive experimental and modeling study of 1-butene oxidation. <i>Combustion and Flame</i> , 2017 , 181, 198-213	5.3	57
234	On the opposing effects of methanol and ethanol addition on PAH and soot formation in ethylene counterflow diffusion flames. <i>Combustion and Flame</i> , 2019 , 202, 228-242	5.3	55
233	Third O2 addition reactions promote the low-temperature auto-ignition of n-alkanes. <i>Combustion and Flame</i> , 2016 , 165, 364-372	5.3	55
232	Calculation of Average Molecular Parameters, Functional Groups, and a Surrogate Molecule for Heavy Fuel Oils Using 1H and 13C Nuclear Magnetic Resonance Spectroscopy. <i>Energy & Discours</i> , 2016 , 30, 3894-3905	4.1	55
231	A blending rule for octane numbers of PRFs and TPRFs with ethanol. Fuel, 2016, 180, 175-186	7.1	54
230	Optimization of the octane response of gasoline/ethanol blends. <i>Applied Energy</i> , 2017 , 203, 778-793	10.7	51
229	Autoignition characteristics of oxygenated gasolines. <i>Combustion and Flame</i> , 2017 , 186, 114-128	5.3	50
228	Heavy fuel oil pyrolysis and combustion: Kinetics and evolved gases investigated by TGA-FTIR. Journal of Analytical and Applied Pyrolysis, 2017 , 127, 183-195	6	48
227	The site effect on PAHs formation in HACA-based mass growth process. <i>Combustion and Flame</i> , 2019 , 199, 54-68	5.3	48
226	Kinetics of ethylcyclohexane pyrolysis and oxidation: An experimental and detailed kinetic modeling study. <i>Combustion and Flame</i> , 2015 , 162, 2873-2892	5.3	47
225	A minimalist functional group (MFG) approach for surrogate fuel formulation. <i>Combustion and Flame</i> , 2018 , 192, 250-271	5.3	47

224	n-Heptane cool flame chemistry: Unraveling intermediate species measured in a stirred reactor and motored engine. <i>Combustion and Flame</i> , 2018 , 187, 199-216	5.3	47	
223	Computational study of the combustion and atmospheric decomposition of 2-methylfuran. <i>Journal of Physical Chemistry A</i> , 2013 , 117, 7670-85	2.8	46	
222	Experimental and kinetic modeling of methyl octanoate oxidation in an opposed-flow diffusion flame and a jet-stirred reactor. <i>Proceedings of the Combustion Institute</i> , 2011 , 33, 1037-1043	5.9	45	
221	Ignition delay measurements of light naphtha: A fully blended low octane fuel. <i>Proceedings of the Combustion Institute</i> , 2017 , 36, 315-322	5.9	44	
220	Modeling Ignition of a Heptane Isomer: Improved Thermodynamics, Reaction Pathways, Kinetics, and Rate Rule Optimizations for 2-Methylhexane. <i>Journal of Physical Chemistry A</i> , 2016 , 120, 2201-17	2.8	43	
219	Ignition studies of two low-octane gasolines. <i>Combustion and Flame</i> , 2017 , 185, 152-159	5.3	43	
218	Structural Level Characterization of Base Oils Using Advanced Analytical Techniques. <i>Energy & Energy </i>	4.1	41	
217	An experimental and kinetic modeling study of n-octane and 2-methylheptane in an opposed-flow diffusion flame. <i>Combustion and Flame</i> , 2011 , 158, 1277-1287	5.3	40	
216	A computational study of ethylenellir sooting flames: Effects of large polycyclic aromatic hydrocarbons. <i>Combustion and Flame</i> , 2016 , 163, 427-436	5.3	39	
215	A counterflow diffusion flame study of branched octane isomers. <i>Proceedings of the Combustion Institute</i> , 2013 , 34, 1015-1023	5.9	39	
214	Cyclopentane combustion chemistry. Part I: Mechanism development and computational kinetics. <i>Combustion and Flame</i> , 2017 , 183, 358-371	5.3	38	
213	Blending Octane Number of Ethanol in HCCI, SI and CI Combustion Modes. <i>SAE International Journal of Fuels and Lubricants</i> , 2016 , 9, 659-682	1.8	37	
212	Cyclopentane combustion. Part II. Ignition delay measurements and mechanism validation. <i>Combustion and Flame</i> , 2017 , 183, 372-385	5.3	36	
211	Integrated In Situ Characterization of a Molten Salt Catalyst Surface: Evidence of Sodium Peroxide and Hydroxyl Radical Formation. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 10403-10407	16.4	36	
210	Lifecycle optimized ethanol-gasoline blends for turbocharged engines. <i>Applied Energy</i> , 2016 , 181, 38-53	3 10.7	35	
209	Numerical investigation of injector geometry effects on fuel stratification in a GCI engine. <i>Fuel</i> , 2018 , 214, 580-589	7.1	35	
208	Theoretical Kinetics Analysis for H Atom Addition to 1,3-Butadiene and Related Reactions on the Potential Energy Surface. <i>Journal of Physical Chemistry A</i> , 2017 , 121, 7433-7445	2.8	34	
207	Development of a reduced four-component (toluene/n-heptane/iso-octane/ethanol) gasoline surrogate model. <i>Fuel</i> , 2019 , 247, 164-178	7.1	33	

206	Polycyclic aromatic hydrocarbons in pyrolysis of gasoline surrogates (n-heptane/iso-octane/toluene). <i>Proceedings of the Combustion Institute</i> , 2019 , 37, 993-1001	5.9	33
205	Autoignition Characterization of Primary Reference Fuels and n-Heptane/n-Butanol Mixtures in a Constant Volume Combustion Device and Homogeneous Charge Compression Ignition Engine. <i>Energy & Description Fuels</i> , 2013 , 27, 7778-7789	4.1	33
204	Jet-stirred reactor and flame studies of propanal oxidation. <i>Proceedings of the Combustion Institute</i> , 2013 , 34, 599-606	5.9	33
203	Experimental and modeling study of the oxidation of n- and iso-butanal. <i>Combustion and Flame</i> , 2013 , 160, 1609-1626	5.3	33
202	Chemical kinetic insights into the ignition dynamics of n-hexane. <i>Combustion and Flame</i> , 2018 , 188, 28-4	40 5.3	32
201	On the effects of fuel properties and injection timing in partially premixed compression ignition of low octane fuels. <i>Fuel</i> , 2017 , 207, 373-388	7.1	32
200	Computational study of polycyclic aromatic hydrocarbons growth by vinylacetylene addition. <i>Combustion and Flame</i> , 2019 , 202, 276-291	5.3	31
199	Three-stage heat release in n-heptane auto-ignition. <i>Proceedings of the Combustion Institute</i> , 2019 , 37, 485-492	5.9	31
198	Mixed butanols addition to gasoline surrogates: Shock tube ignition delay time measurements and chemical kinetic modeling. <i>Combustion and Flame</i> , 2015 , 162, 3971-3979	5.3	30
197	A fundamental investigation into the relationship between lubricant composition and fuel ignition quality. <i>Fuel</i> , 2015 , 160, 605-613	7.1	30
196	Aromatic ring formation in opposed-flow diffusive 1,3-butadiene flames. <i>Proceedings of the Combustion Institute</i> , 2017 , 36, 947-955	5.9	30
195	New insights into the low-temperature oxidation of 2-methylhexane. <i>Proceedings of the Combustion Institute</i> , 2017 , 36, 373-382	5.9	30
194	Characterization of deasphalted heavy fuel oil using APPI (+) FT-ICR mass spectrometry and NMR spectroscopy. <i>Fuel</i> , 2019 , 253, 950-963	7.1	29
193	An experimental and modeling study of the autoignition of 3-methylheptane. <i>Proceedings of the Combustion Institute</i> , 2013 , 34, 335-343	5.9	29
192	Heats of Formation of Medium-Sized Organic Compounds from Contemporary Electronic Structure Methods. <i>Journal of Chemical Theory and Computation</i> , 2017 , 13, 3537-3560	6.4	29
191	Exploring gasoline oxidation chemistry in jet stirred reactors. <i>Fuel</i> , 2019 , 236, 1282-1292	7.1	29
190	A comprehensive experimental and modeling study of 2-methylbutanol combustion. <i>Combustion and Flame</i> , 2015 , 162, 2166-2176	5.3	28
189	Surrogate formulation for diesel and jet fuels using the minimalist functional group (MFG) approach. <i>Proceedings of the Combustion Institute</i> , 2019 , 37, 4663-4671	5.9	28

188	A technological roadmap to the ammonia energy economy: Current state and missing technologies. <i>Chemical Engineering Journal</i> , 2021 , 408, 127310	14.7	28	
187	Estimating fuel octane numbers from homogeneous gas-phase ignition delay times. <i>Combustion and Flame</i> , 2018 , 188, 307-323	5.3	28	
186	A comparative study on the sooting tendencies of various 1-alkene fuels in counterflow diffusion flames. <i>Combustion and Flame</i> , 2018 , 192, 71-85	5.3	27	
185	Effects of methyl substitution on the auto-ignition of C16 alkanes. <i>Combustion and Flame</i> , 2016 , 164, 259-269	5.3	27	
184	Small ester combustion chemistry: Computational kinetics and experimental study of methyl acetate and ethyl acetate. <i>Proceedings of the Combustion Institute</i> , 2019 , 37, 419-428	5.9	27	
183	On the High-Temperature Combustion of n-Butanol: Shock Tube Data and an Improved Kinetic Model. <i>Energy & Data and an Improved Kinetic Model. Energy & Data and Butter Study</i> (2013), 27, 7072-7080	4.1	27	
182	Elucidating reactivity regimes in cyclopentane oxidation: Jet stirred reactor experiments, computational chemistry, and kinetic modeling. <i>Proceedings of the Combustion Institute</i> , 2017 , 36, 469-4	1779	27	
181	Ignition of non-premixed counterflow flames of octane and decane isomers. <i>Proceedings of the Combustion Institute</i> , 2013 , 34, 903-910	5.9	26	
180	Performance and emissions of gasoline blended with terpineol as an octane booster. <i>Renewable Energy</i> , 2017 , 101, 1087-1093	8.1	26	
179	The influence of n -butanol blending on the ignition delay times of gasoline and its surrogate at high pressures. <i>Fuel</i> , 2017 , 187, 211-219	7.1	25	
178	Oxidation of 2-methylfuran and 2-methylfuran/n-heptane blends: An experimental and modeling study. <i>Combustion and Flame</i> , 2018 , 196, 54-70	5.3	25	
177	Ignition characteristics of 2-methyltetrahydrofuran: An experimental and kinetic study. <i>Proceedings of the Combustion Institute</i> , 2017 , 36, 587-595	5.9	24	
176	Terpineol as a novel octane booster for extending the knock limit of gasoline. Fuel, 2017, 187, 9-15	7.1	24	
175	Experimental and Kinetic Modeling Study of 3-Methylheptane in a Jet-Stirred Reactor. <i>Energy & Emp; Fuels</i> , 2012 , 26, 4680-4689	4.1	24	
174	Jet-stirred reactor oxidation of alkane-rich FACE gasoline fuels. <i>Proceedings of the Combustion Institute</i> , 2017 , 36, 517-524	5.9	23	
173	New insights into methane-oxygen ion chemistry. <i>Proceedings of the Combustion Institute</i> , 2017 , 36, 121	3 5 .922	1 22	
172	Machine Learning To Predict Standard Enthalpy of Formation of Hydrocarbons. <i>Journal of Physical Chemistry A</i> , 2019 , 123, 8305-8313	2.8	22	
171	Methylcyclohexane pyrolysis and oxidation in a jet-stirred reactor. <i>Proceedings of the Combustion Institute</i> , 2019 , 37, 409-417	5.9	22	

170	PAH formation from jet stirred reactor pyrolysis of gasoline surrogates. <i>Combustion and Flame</i> , 2020 , 219, 312-326	5.3	21
169	Extensive Theoretical Study of the Thermochemical Properties of Unsaturated Hydrocarbons and Allylic and Super-Allylic Radicals: The Development and Optimization of Group Additivity Values. <i>Journal of Physical Chemistry A</i> , 2018 , 122, 4736-4749	2.8	21
168	Evolution of oxygenated polycyclic aromatic hydrocarbon chemistry at flame temperatures. <i>Combustion and Flame</i> , 2019 , 209, 441-451	5.3	21
167	Low temperature autoignition of 5-membered ring naphthenes: Effects of substitution. <i>Combustion and Flame</i> , 2019 , 200, 387-404	5.3	21
166	One-step conversion of crude oil to light olefins using a multi-zone reactor. <i>Nature Catalysis</i> , 2021 , 4, 233-241	36.5	21
165	Improved combustion kinetic model and HCCI engine simulations of di-isopropyl ketone ignition. <i>Fuel</i> , 2016 , 164, 141-150	7.1	20
164	High temperature shock tube experiments and kinetic modeling study of diisopropyl ketone ignition and pyrolysis. <i>Combustion and Flame</i> , 2017 , 177, 207-218	5.3	20
163	Chemical Ignition Characteristics of Ethanol Blending with Primary Reference Fuels. <i>Energy & Energy &</i>	4.1	20
162	An experimental and modeling study of diethyl carbonate oxidation. <i>Combustion and Flame</i> , 2015 , 162, 1395-1405	5.3	20
161	Analysis of impact of temperature and saltwater on Nannochloropsis salina bio-oil production by ultra high resolution APCI FT-ICR MS. <i>Algal Research</i> , 2015 , 9, 227-235	5	20
160	2-Methylfuran: A bio-derived octane booster for spark-ignition engines. Fuel, 2018, 225, 349-357	7.1	20
159	Atmospheric pressure chemical ionization Fourier transform ion cyclotron resonance mass spectrometry for complex thiophenic mixture analysis. <i>Rapid Communications in Mass Spectrometry</i> , 2013 , 27, 2432-8	2.2	20
158	Fuel and Chemical Properties of Waste Tire Pyrolysis Oil Derived from a Continuous Twin-Auger Reactor. <i>Energy & Description</i> 2020, 34, 12688-12702	4.1	20
157	Autoignition of straight-run naphtha: A promising fuel for advanced compression ignition engines. <i>Combustion and Flame</i> , 2018 , 189, 337-346	5.3	20
156	Theoretical kinetic study of the formic acid catalyzed Criegee intermediate isomerization: multistructural anharmonicity and atmospheric implications. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 10806-10814	3.6	19
155	CH4/air homogeneous autoignition: A comparison of two chemical kinetics mechanisms. <i>Fuel</i> , 2018 , 223, 74-85	7.1	19
154	Modeling the combustion of high molecular weight fuels by a functional group approach. <i>International Journal of Chemical Kinetics</i> , 2012 , 44, 257-276	1.4	19
153	Combustion Characteristics of C5 Alcohols and a Skeletal Mechanism for Homogeneous Charge Compression Ignition Combustion Simulation. <i>Energy & Energy & Ene</i>	4.1	18

152	Ab initio and transition state theory study of the OH + HO -rHO + O(\mathbb{P} O(\mathbb{P} reactions: yield and role of O(\mathbb{P} in HO decomposition and in combustion of H. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 4478-448	39	18	
151	Bridging the gap in a resource and climate-constrained world with advanced gasoline compression-ignition hybrids. <i>Applied Energy</i> , 2020 , 267, 114936	7	18	
150	A laminar flame investigation of 2-butanone, and the combustion-related intermediates formed through its oxidation. <i>Proceedings of the Combustion Institute</i> , 2017 , 36, 1175-1183		17	•
149	Simulating HCCI Blending Octane Number of Primary Reference Fuel with Ethanol 2017,		17	
148	Prospects of 2,5-dimethylfuran as a fuel: physico-chemical and engine performance characteristics evaluation. <i>Journal of Material Cycles and Waste Management</i> , 2015 , 17, 459-464		17	
147	Quantities of Interest in Jet Stirred Reactor Oxidation of a High-Octane Gasoline. <i>Energy & amp</i> ; 4.1		16	
146	The influence of chemical composition on ignition delay times of gasoline fractions. <i>Combustion and Flame</i> , 2019 , 209, 418-429		16	
145	Ion chemistry in premixed rich methane flames. <i>Combustion and Flame</i> , 2019 , 202, 208-218 5.3		16	
144	Numerical modelling of ion transport in flames. <i>Combustion Theory and Modelling</i> , 2015 , 19, 744-772 1.5		16	
143	Kinetics of the high-temperature combustion reactions of dibutylether using composite computational methods. <i>Proceedings of the Combustion Institute</i> , 2015 , 35, 385-392		16	
142	Cool diffusion flames of butane isomers activated by ozone in the counterflow. <i>Combustion and Flame</i> , 2018 , 191, 175-186		16	
141	Combustion chemistry of alcohols: Experimental and modeled structure of a premixed 2-methylbutanol flame. <i>Proceedings of the Combustion Institute</i> , 2015 , 35, 813-820		16	
140	On the distillation of waste tire pyrolysis oil: A structural characterization of the derived fractions. <i>Fuel</i> , 2021 , 290, 120041		16	
139	Theoretical Kinetic Study of the Unimolecular Keto-Enol Tautomerism Propen-2-ol <-rAcetone. Pressure Effects and Implications in the Pyrolysis of tert- and 2-Butanol. <i>Journal of Physical</i> 2.8 Chemistry A, 2018 , 122, 3547-3555		15	
138	Antiknock quality and ignition kinetics of 2-phenylethanol, a novel lignocellulosic octane booster. Proceedings of the Combustion Institute, 2017 , 36, 3515-3522		15	
137	CO2 Derived E-Fuels: Research Trends, Misconceptions, and Future Directions. <i>Trends in Chemistry</i> , 2020 , 2, 785-795	8	15	
136	Mixing-structure relationship in jet-stirred reactors. <i>Chemical Engineering Research and Design</i> , 2016 , 111, 461-464		15	
135	Auto-ignition of direct injection spray of light naphtha, primary reference fuels, gasoline and gasoline surrogate. <i>Energy</i> , 2019 , 170, 375-390		15	

134	Measurement of laminar burning velocity of n-pentanol + air mixtures at elevated temperatures and a skeletal kinetic model. <i>Fuel</i> , 2019 , 237, 10-17	7.1	15
133	Ignition delay time sensitivity in ignition quality tester (IQT) and its relation to octane sensitivity. <i>Fuel</i> , 2018 , 233, 412-419	7.1	15
132	Shock tube and modeling study of 2,7-dimethyloctane pyrolysis and oxidation. <i>Combustion and Flame</i> , 2015 , 162, 2296-2306	5.3	14
131	Spray combustion simulation study of waste cooking oil biodiesel and diesel under direct injection diesel engine conditions. <i>Fuel</i> , 2020 , 267, 117240	7.1	14
130	High-Pressure Limit Rate Rules for ⊞ Isomerization of Hydroperoxyalkylperoxy Radicals. <i>Journal of Physical Chemistry A</i> , 2018 , 122, 3626-3639	2.8	14
129	Effects of Substitution on Counterflow Ignition and Extinction of C3 and C4 Alcohols. <i>Energy & Energy & Energy</i>	4.1	14
128	Effect of Mixture Formation and Injection Strategies on Stochastic Pre-Ignition 2018,		14
127	Combustion chemistry of ammonia/hydrogen mixtures: Jet-stirred reactor measurements and comprehensive kinetic modeling. <i>Combustion and Flame</i> , 2021 , 234, 111653	5.3	14
126	Experiments and simulations of NOx formation in the combustion of hydroxylated fuels. <i>Combustion and Flame</i> , 2015 , 162, 2322-2336	5.3	13
125	Laminar Burning Velocities and Kinetic Modeling of a Renewable E-Fuel: Formic Acid and Its Mixtures with H2 and CO2. <i>Energy & Description</i> 2020, 34, 7564-7572	4.1	13
124	Global sensitivity analysis of n-butanol reaction kinetics using rate rules. <i>Combustion and Flame</i> , 2018 , 196, 452-465	5.3	13
123	Compositional Effects of Gasoline Fuels on Combustion, Performance and Emissions in Engine. <i>SAE International Journal of Fuels and Lubricants</i> , 2016 , 9, 460-468	1.8	13
122	Experimental and Numerical Investigation of Ethanol/Diethyl Ether Mixtures in a CI Engine 2016,		13
121	Automated chemical kinetic mechanism simplification with minimal user expertise. <i>Combustion and Flame</i> , 2018 , 197, 439-448	5.3	13
120	Rapid soot inception via Halkynyl substitution of polycyclic aromatic hydrocarbons. <i>Fuel</i> , 2021 , 295, 120	5 8 01	13
119	Exploring the combustion chemistry of a novel lignocellulose-derived biofuel: cyclopentanol. Part I: quantum chemistry calculation and kinetic modeling. <i>Combustion and Flame</i> , 2019 , 210, 490-501	5.3	12
118	Enhanced lubrication by core-shell TiO2 nanoparticles modified with gallic acid ester. <i>Tribology International</i> , 2020 , 146, 106263	4.9	12
117	Understanding premixed flame chemistry of gasoline fuels by comparing quantities of interest. <i>Proceedings of the Combustion Institute</i> , 2017 , 36, 1203-1211	5.9	12

(2020-2016)

116	Two-stage Lagrangian modeling of ignition processes in ignition quality tester and constant volume combustion chambers. <i>Fuel</i> , 2016 , 185, 589-598	7.1	12
115	A comprehensive experimental and kinetic modeling study of 1- and 2-pentene. <i>Combustion and Flame</i> , 2021 , 223, 166-180	5.3	12
114	Ab Initio, Transition State Theory, and Kinetic Modeling Study of the HO-Assisted Keto-Enol Tautomerism Propen-2-ol + HO < Acetone + HO under Combustion, Atmospheric, and Interstellar Conditions. <i>Journal of Physical Chemistry A</i> , 2018 , 122, 9792-9805	2.8	12
113	Variations in non-thermal NO formation pathways in alcohol flames. <i>Proceedings of the Combustion Institute</i> , 2017 , 36, 3995-4002	5.9	11
112	Premixed flame chemistry of a gasoline primary reference fuel surrogate. <i>Combustion and Flame</i> , 2017 , 179, 300-311	5.3	11
111	Achieving 80% greenhouse gas reduction target in Saudi Arabia under low and medium oil prices. <i>Energy Policy</i> , 2017 , 101, 502-511	7.2	11
110	Oxidation kinetics of n-pentanol: A theoretical study of the reactivity of the 1-hydroxy-1-peroxypentyl radical. <i>Combustion and Flame</i> , 2020 , 219, 20-32	5.3	11
109	Integrated In Situ Characterization of a Molten Salt Catalyst Surface: Evidence of Sodium Peroxide and Hydroxyl Radical Formation. <i>Angewandte Chemie</i> , 2017 , 129, 10539-10543	3.6	11
108	Effect of Different Fluids on Injection Strategies to Suppress Pre-Ignition		11
107	Efficient alkane oxidation under combustion engine and atmospheric conditions. <i>Communications Chemistry</i> , 2021 , 4,	6.3	11
106	Measurements of Positively Charged Ions in Premixed Methane-Oxygen Atmospheric Flames. <i>Combustion Science and Technology</i> , 2017 , 189, 575-594	1.5	10
105	A lumped kinetic model for high-temperature pyrolysis and combustion of 50 surrogate fuel components and their mixtures. <i>Fuel</i> , 2021 , 286, 119361	7.1	10
104	Reduced Gasoline Surrogate (Toluene/n-Heptane/iso-Octane) Chemical Kinetic Model for Compression Ignition Simulations 2018 ,		10
103	Autoignition of diethyl ether and a diethyl ether/ethanol blend. Fuel, 2020, 279, 118553	7.1	9
102	A surrogate fuel formulation to characterize heating and evaporation of light naphtha droplets. <i>Combustion Science and Technology</i> , 2018 , 190, 1218-1231	1.5	9
101	Experimental and Chemical Kinetic Modeling Study of Dimethylcyclohexane Oxidation and Pyrolysis. <i>Energy & Dimethylcyclohexane Oxidation and Pyrolysis</i> . <i>Energy & Dimethylcyclohexane Oxidation and Pyrolysis</i> .	4.1	9
100	An experimental and modeling study investigating the ignition delay in a military diesel engine running hexadecane (cetane) fuel. <i>International Journal of Engine Research</i> , 2013 , 14, 57-67	2.7	9
99	Probing hydrogenflitrogen chemistry: A theoretical study of important reactions in NxHy, HCN and HNCO oxidation. <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 23624-23637	6.7	9

98	Effectiveness of Fuel Enrichment on Knock Suppression in a Gasoline Spark-Ignited Engine 2018,		9
97	Ethanolic gasoline, a lignocellulosic advanced biofuel. Sustainable Energy and Fuels, 2019, 3, 409-421	5.8	8
96	Autoignition Characteristics of Ethers Blended with Low Cetane Distillates. <i>Energy & amp; Fuels</i> , 2019 , 33, 6775-6787	4.1	8
95	Experimental and numerical investigations on the laminar burning velocity of n-butanol + air mixtures at elevated temperatures. <i>Fuel</i> , 2019 , 249, 36-44	7.1	8
94	Blending Behavior of Ethanol with PRF 84 and FACE A Gasoline in HCCI Combustion Mmode 2017,		8
93	Techno-Economic Analysis of Pressurized Oxy-Fuel Combustion of Petroleum Coke. <i>Energies</i> , 2020 , 13, 3463	3.1	8
92	⊕inene - A High Energy Density Biofuel for SI Engine Applications 2016 ,		8
91	A functional-group-based approach to modeling real-fuel combustion chemistry I : Prediction of stoichiometric parameters for lumped pyrolysis reactions. <i>Combustion and Flame</i> , 2021 , 227, 497-509	5.3	8
90	Probing the Chemical Kinetics of Minimalist Functional Group Gasoline Surrogates. <i>Energy & Energy & E</i>	4.1	8
89	Analysis of the current loltage curves and saturation currents in burner-stabilised premixed flames with detailed ion chemistry and transport models. <i>Combustion Theory and Modelling</i> , 2018 , 22, 939-972	1.5	8
88	Effect of the Methyl Substitution on the Combustion of Two Methylheptane Isomers: Flame Chemistry Using Vacuum-Ultraviolet (VUV) Photoionization Mass Spectrometry. <i>Energy & amp; Fuels</i> , 2015, 29, 2696-2708	4.1	7
87	CloudFlame: Cyberinfrastructure for Combustion Research 2013,		7
86	Data Science Approach to Estimate Enthalpy of Formation of Cyclic Hydrocarbons. <i>Journal of Physical Chemistry A</i> , 2020 , 124, 6270-6276	2.8	7
85	Chemical and kinetic insights into fuel lubricity loss of low-sulfur diesel upon the addition of multiple oxygenated compounds. <i>Tribology International</i> , 2020 , 152, 106559	4.9	7
84	Computational singular perturbation analysis of brain lactate metabolism. <i>PLoS ONE</i> , 2019 , 14, e022609	14 .7	7
83	Impact of OH Radical Generator Involvement in the Gas-Phase Radical Reaction Network on the Oxidative Coupling of Methane Simulation Study. <i>Energy Technology</i> , 2020 , 8, 1900563	3.5	7
82	Unraveling the octane response of gasoline/ethanol blends: Paving the way to formulating gasoline surrogates. <i>Fuel</i> , 2021 , 299, 120882	7.1	7
81	An investigation into the pyrolysis and oxidation of bio-oil from sugarcane bagasse: Kinetics and evolved gases using TGA-FTIR. <i>Journal of Environmental Chemical Engineering</i> , 2021 , 9, 106144	6.8	7

(2020-2020)

80	Gas-to-Liquid Phase Transition of PAH at Flame Temperatures. <i>Journal of Physical Chemistry A</i> , 2020 , 124, 3896-3903	2.8	6
79	Screening gas-phase chemical kinetic models: Collision limit compliance and ultrafast timescales. <i>International Journal of Chemical Kinetics</i> , 2020 , 52, 599-610	1.4	6
78	A Systematic Theoretical Kinetics Analysis for the Waddington Mechanism in the Low-Temperature Oxidation of Butene and Butanol Isomers. <i>Journal of Physical Chemistry A</i> , 2020 , 124, 5646-5656	2.8	6
77	Chemical kinetics of hydroxyl reactions with cyclopentadiene and indene. <i>Combustion and Flame</i> , 2020 , 217, 48-56	5.3	6
76	Computational Kinetics of Hydroperoxybutylperoxy Isomerizations and Decompositions: A Study of the Effect of Hydrogen Bonding. <i>Journal of Physical Chemistry A</i> , 2018 , 122, 6277-6291	2.8	6
75	A droplet reactor on a super-hydrophobic surface allows control and characterization of amyloid fibril growth. <i>Communications Biology</i> , 2020 , 3, 457	6.7	6
74	Environmental Challenges and Opportunities in Marine Engine Heavy Fuel Oil Combustion. <i>Lecture Notes in Civil Engineering</i> , 2019 , 1047-1055	0.3	6
73	A functional-group-based approach to modeling real-fuel combustion chemistry []I: Kinetic model construction and validation. <i>Combustion and Flame</i> , 2021 , 227, 510-525	5.3	6
72	Stabilization and structure of n-heptane tribrachial flames in axisymmetric laminar jets. <i>Proceedings of the Combustion Institute</i> , 2015 , 35, 1023-1032	5.9	5
71	Lube Products: Molecular Characterization of Base Oils 2018 , 1-14		5
71 70	Lube Products: Molecular Characterization of Base Oils 2018 , 1-14 A techno-economic and life cycle assessment for the production of green methanol from CO2: catalyst and process bottlenecks. <i>Journal of Energy Chemistry</i> , 2021 , 68, 255-255	12	5
	A techno-economic and life cycle assessment for the production of green methanol from CO2:	12	
70	A techno-economic and life cycle assessment for the production of green methanol from CO2: catalyst and process bottlenecks. <i>Journal of Energy Chemistry</i> , 2021 , 68, 255-255 Analyzing the solid soot particulates formed in a fuel-rich flame by solvent-free matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry. <i>Rapid</i>		5
70 69	A techno-economic and life cycle assessment for the production of green methanol from CO2: catalyst and process bottlenecks. <i>Journal of Energy Chemistry</i> , 2021 , 68, 255-255 Analyzing the solid soot particulates formed in a fuel-rich flame by solvent-free matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , 2020 , 34, e8596 Cool flame chemistry of diesel surrogate compounds: n-Decane, 2-methylnonane,	2.2	5
7° 69 68	A techno-economic and life cycle assessment for the production of green methanol from CO2: catalyst and process bottlenecks. <i>Journal of Energy Chemistry</i> , 2021 , 68, 255-255 Analyzing the solid soot particulates formed in a fuel-rich flame by solvent-free matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , 2020 , 34, e8596 Cool flame chemistry of diesel surrogate compounds: n-Decane, 2-methylnonane, 2,7-dimethyloctane, and n-butylcyclohexane. <i>Combustion and Flame</i> , 2020 , 219, 384-392 Global sensitivity analysis of n-butanol ignition delay times to thermodynamics class and rate rule	2.2 5·3	555
7° 69 68	A techno-economic and life cycle assessment for the production of green methanol from CO2: catalyst and process bottlenecks. <i>Journal of Energy Chemistry</i> , 2021 , 68, 255-255 Analyzing the solid soot particulates formed in a fuel-rich flame by solvent-free matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , 2020 , 34, e8596 Cool flame chemistry of diesel surrogate compounds: n-Decane, 2-methylnonane, 2,7-dimethyloctane, and n-butylcyclohexane. <i>Combustion and Flame</i> , 2020 , 219, 384-392 Global sensitivity analysis of n-butanol ignition delay times to thermodynamics class and rate rule parameters. <i>Combustion and Flame</i> , 2020 , 222, 355-369 Exploring low temperature oxidation of 1-butene in jet-stirred reactors. <i>Combustion and Flame</i> ,	2.25·3	5555
7° 69 68 67 66	A techno-economic and life cycle assessment for the production of green methanol from CO2: catalyst and process bottlenecks. <i>Journal of Energy Chemistry</i> , 2021 , 68, 255-255 Analyzing the solid soot particulates formed in a fuel-rich flame by solvent-free matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , 2020 , 34, e8596 Cool flame chemistry of diesel surrogate compounds: n-Decane, 2-methylnonane, 2,7-dimethyloctane, and n-butylcyclohexane. <i>Combustion and Flame</i> , 2020 , 219, 384-392 Global sensitivity analysis of n-butanol ignition delay times to thermodynamics class and rate rule parameters. <i>Combustion and Flame</i> , 2020 , 222, 355-369 Exploring low temperature oxidation of 1-butene in jet-stirred reactors. <i>Combustion and Flame</i> , 2020 , 222, 259-271 Multi-stage heat release in lean combustion: Insights from coupled tangential stretching rate (TSR)	2.25·35·3	5 5 5 5 5

62	Early Chemistry of Nicotine Degradation in Heat-Not-Burn Smoking Devices and Conventional Cigarettes: Implications for Users and Second- and Third-Hand Smokers. <i>Journal of Physical Chemistry A</i> , 2021 , 125, 3177-3188	2.8	5
61	Surrogate formulation and molecular characterization of sulfur species in vacuum residues using APPI and ESI FT-ICR mass spectrometry. <i>Fuel</i> , 2021 , 293, 120471	7.1	5
60	Fuel Class Higher Alcohols 2016 , 29-57		5
59	A theoretical study of the H- and HOEssisted propen-2-ol tautomerizations: Reactive systems to evaluate collision efficiency definitions on chemically activated reactions using SS-QRRK theory. <i>Combustion and Flame</i> , 2021 , 225, 485-498	5.3	5
58	Experimental and theoretical evidence for the temperature-determined evolution of PAH functional groups. <i>Proceedings of the Combustion Institute</i> , 2021 , 38, 1467-1475	5.9	5
57	The Influence of Intake Pressure and Ethanol Addition to Gasoline on Single- and Dual-Stage Autoignition in an HCCI Engine. <i>Energy & Energy & Ener</i>	4.1	5
56	Bio-oil and biochar production from halophyte biomass: effects of pre-treatment and temperature on Salicornia bigelovii pyrolysis. <i>Sustainable Energy and Fuels</i> , 2021 , 5, 2234-2248	5.8	5
55	Identification of volatile constituents released from IQOS heat-not-burn tobacco HeatSticks using a direct sampling method. <i>Tobacco Control</i> , 2020 ,	5.3	4
54	Hydrotreated Renewable Jet Fuel Ignition Delay Performance in a Military Diesel Engine: An Experimental and Modeling Study 2012 ,		4
53	High purity, self-sustained, pressurized hydrogen production from ammonia in a catalytic membrane reactor. <i>Chemical Engineering Journal</i> , 2022 , 431, 134310	14.7	4
52	Pyrolysis of Waste Tires in a Twin-Auger Reactor Using CaO: Assessing the Physicochemical Properties of the Derived Products. <i>Energy & Description</i> 2021, 35, 8819-8833	4.1	4
51	Predicting Ignition Quality of Oxygenated Fuels Using Artificial Neural Networks. <i>SAE International Journal of Fuels and Lubricants</i> ,14,	1.8	4
50	Polyether-Based Block Co(ter)polymers as Multifunctional Lubricant Additives. <i>ACS Applied Polymer Materials</i> , 2021 , 3, 3811-3820	4.3	4
49	Oxidative-Coupling-Assisted Methane Aromatization: A Simulation Study. <i>Industrial & amp; Engineering Chemistry Research</i> , 2019 , 58, 22884-22892	3.9	4
48	Chemical structure of atmospheric pressure premixed laminar formic acid/hydrogen flames. <i>Proceedings of the Combustion Institute</i> , 2021 , 38, 2379-2386	5.9	4
47	Simultaneous production of ketohydroperoxides from low temperature oxidation of a gasoline primary reference fuel mixture. <i>Fuel</i> , 2021 , 288, 119737	7.1	4
46	The Role of Intermediate-Temperature Heat Release in Octane Sensitivity of Fuels with Matching Research Octane Number. <i>Energy & Description</i> 2021, 35, 4457-4477	4.1	4
45	A comprehensive combustion chemistry study of n-propylcyclohexane. <i>Combustion and Flame</i> , 2021 , 233, 111576	5.3	4

(2021-2018)

44	Impact of thermodynamic properties and heat loss on ignition of transportation fuels in rapid compression machines. <i>Fuel</i> , 2018 , 218, 203-212	7.1	3
43	Chemical Kinetic Modeling Study on the Influence of n-Butanol Blending on the Combustion, Autoignition, and Knock Properties of Gasoline and Its Surrogate in a Spark-Ignition Engine. <i>Energy & Energy Fuels</i> , 2018 , 32, 10065-10077	4.1	3
42	A comprehensive neural network model for predicting flash point of oxygenated fuels using a functional group approach. <i>Fuel</i> , 2022 , 317, 123428	7.1	3
41	Evaporation, break-up, and pyrolysis of multi-component Arabian Light crude oil droplets at various temperatures. <i>International Journal of Heat and Mass Transfer</i> , 2021 , 183, 122175	4.9	3
40	Investigating Water Injection in Single-Cylinder Gasoline Spark-Ignited Engines at Fixed Speed. <i>Energy & Damp; Fuels</i> , 2020 , 34, 16636-16653	4.1	3
39	Predicting entropy and heat capacity of hydrocarbons using machine learning. <i>Energy and AI</i> , 2021 , 4, 100054	12.6	3
38	Understanding multi-stage HCCI combustion caused by thermal stratification and chemical three-stage auto-ignition. <i>Proceedings of the Combustion Institute</i> , 2021 , 38, 5575-5583	5.9	3
37	The effect of hydrogen bonding on the reactivity of OH radicals with prenol and isoprenol: a shock tube and multi-structural torsional variational transition state theory study <i>Physical Chemistry Chemical Physics</i> , 2022 ,	3.6	3
36	Understanding the blending octane behaviour of unsaturated hydrocarbons: A case study of C4 molecules and comparison with toluene. <i>Fuel</i> , 2020 , 275, 117971	7.1	2
35	A decoupled modeling approach and experimental measurements for pyrolysis of C6-C10 saturated fatty acid methyl esters (FAMEs). <i>Combustion and Flame</i> , 2022 , 111955	5.3	2
34	High-Temperature Pyrolysis and Combustion of C5\(\textit{L}\)19 Fatty Acid Methyl Esters (FAMEs): A Lumped Kinetic Modeling Study. <i>Energy & Amp; Fuels</i> , 2021 , 35, 19553-19567	4.1	2
33	Noncatalytic Oxidative Coupling of Methane (OCM): Gas-Phase Reactions in a Jet Stirred Reactor (JSR) <i>ACS Omega</i> , 2021 , 6, 33757-33768	3.9	2
32	On the effects of CO2 atmosphere in the pyrolysis of Salicornia bigelovii. <i>Bioresource Technology Reports</i> , 2022 , 17, 100950	4.1	2
31	Ammonia and ammonia/hydrogen blends oxidation in a jet-stirred reactor: Experimental and numerical study. <i>Fuel</i> , 2022 , 310, 122202	7.1	2
30	Three-stage auto-ignition of n-heptane and methyl-cyclohexane mixtures at lean conditions in a flat piston rapid compression machine. <i>Proceedings of the Combustion Institute</i> , 2021 , 38, 5539-5548	5.9	2
29	Understanding the synergistic blending octane behavior of 2-methylfuran. <i>Proceedings of the Combustion Institute</i> , 2021 , 38, 5625-5633	5.9	2
28	Effects of ammonia addition on soot formation in ethylene laminar premixed flames. <i>Combustion and Flame</i> , 2021 , 111698	5.3	2
27	On the origins of lubricity and surface cleanliness in ethanol-diesel fuel blends. <i>Fuel</i> , 2021 , 302, 121135	7.1	2

26	Laminar Burning Velocities of Formic Acid and Formic Acid/Hydrogen Flames: An Experimental and Modeling Study. <i>Energy & Dels</i> , 2021, 35, 1760-1767	4.1	2
25	The impact of gasoline formulation on turbulent jet ignition. <i>Fuel</i> , 2022 , 324, 124373	7.1	2
24	Chemical kinetic study of triptane (2,2,3-trimethylbutane) as an anti-knock additive. <i>Combustion and Flame</i> , 2019 , 210, 399-412	5.3	1
23	Optimizing Blendstock Composition and Ethanol Feedstock to Reduce Gasoline Well-to-Pump CO 2 Emission. <i>Energy Procedia</i> , 2017 , 105, 3642-3647	2.3	1
22	Knock, Auto-Ignition and Pre-Ignition Tendency of Fuels for Advanced Combustion Engines (FACE) with Ethanol Blends and Similar RON		1
21	Hydrogen Selective Catalytic Reduction of Nitrogen Oxide on Pt- and Pd-Based Catalysts for Lean-Burn Automobile Applications		1
20	Developing a Theoretical Approach for Accurate Determination of the Density and Thermochemical Properties of Energetic Ionic Liquids. <i>Propellants, Explosives, Pyrotechnics</i> , 2020 , 45, 1949-1958	1.7	1
19	Theoretical Study of an Undisclosed Reaction Class: Direct H-Atom Abstraction from Allylic Radicals by Molecular Oxygen. <i>Energies</i> , 2021 , 14, 2916	3.1	1
18	Using deep neural networks to diagnose engine pre-ignition. <i>Proceedings of the Combustion Institute</i> , 2021 , 38, 5915-5922	5.9	1
17	Counterflow ignition and extinction of FACE gasoline fuels. <i>Proceedings of the Combustion Institute</i> , 2021 , 38, 2323-2331	5.9	1
16	Polymeric waste valorization at a crossroads: ten ways to bridge the research on model and complex/real feedstock. <i>Green Chemistry</i> , 2021 , 23, 4656-4664	10	1
15	Atomistic simulations of syngas oxy-combustion in supercritical CO2. <i>Journal of CO2 Utilization</i> , 2021 , 49, 101554	7.6	1
14	Hydrogen Evolution from Hydrocarbon Pyrolysis in a Simulated Liquid Metal Bubble Reactor. <i>Energy & Description of the Energy & Energy & Description of the Energy & Descr</i>	4.1	1
13	Probing the gas-phase oxidation of ammonia: Addressing uncertainties with theoretical calculations. <i>Combustion and Flame</i> , 2021 , 111708	5.3	1
12	A reinforcement learning-based economic model predictive control framework for autonomous operation of chemical reactors. <i>Chemical Engineering Journal</i> , 2022 , 428, 130993	14.7	1
11	A Methodology for Designing Octane Number of Fuels Using Genetic Algorithms and Artificial Neural Networks. <i>Energy & Designing States</i> , 2022, 36, 3867-3880	4.1	1
10	Revisiting low temperature oxidation chemistry of n-heptane. <i>Combustion and Flame</i> , 2022 , 242, 11217	7 _{5.3}	1
9	Investigating the Effects of C3 and C4 Alcohol Blending on Ignition Quality of Gasoline Fuels. <i>Energy & Energy & Energy</i>	4.1	O

LIST OF PUBLICATIONS

8	Kinetics of the benzyl + HO and benzoxyl + OH barrierless association reactions: fate of the benzyl hydroperoxide adduct under combustion and atmospheric conditions. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 9029-9039	3.6	О
7	Effects of fuel composition variability on high temperature combustion properties: A statistical analysis. <i>Applications in Energy and Combustion Science</i> , 2020 , 1-4, 100012	0.8	O
6	Low-temperature oxidation chemistry of 2,4,4-trimethyl-1-pentene (diisobutylene) triggered by dimethyl ether (DME): A jet-stirred reactor oxidation and kinetic modeling investigation. <i>Combustion and Flame</i> , 2021 , 234, 111629	5.3	О
5	Influence of gasoline fuel formulation on lean autoignition in a mixed-mode-combustion (deflagration/autoignition) engine. <i>Combustion and Flame</i> , 2022 , 242, 112163	5.3	O
4	Accurate thermochemistry prediction of extensive Polycyclic aromatic hydrocarbons (PAHs) and relevant radicals. <i>Combustion and Flame</i> , 2022 , 242, 112159	5.3	О
3	An experimental and kinetic modeling study of the pyrolysis of isoprene, a significant biogenic hydrocarbon in naturally occurring vegetation fires. <i>Combustion and Flame</i> , 2022 , 242, 112206	5.3	O
2	Artificial intelligence∄nabled fuel design 2022 , 47-67		
1	On the lubricity mechanism of carbon-based nanofluid fuels. <i>Fuel</i> , 2022 , 308, 122031	7.1	