Iñigo Agote

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/429900/publications.pdf

Version: 2024-02-01

		1163117	1474206	
10	418	8	9	
papers	citations	h-index	g-index	
10	10	10	569	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Physical, Mechanical, and Structural Properties of Highly Efficient Nanostructured n- and p-Silicides for Practical Thermoelectric Applications. Journal of Electronic Materials, 2014, 43, 1703-1711.	2.2	119
2	A review on recent developments in binder jetting metal additive manufacturing: materials and process characteristics. Powder Metallurgy, 2019, 62, 267-296.	1.7	87
3	Joining of ceramic matrix composites to high temperature ceramics for thermal protection systems. Journal of the European Ceramic Society, 2016, 36, 443-449.	5.7	51
4	Fabrication and characterisation of Titanium Matrix Composites obtained using a combination of Self propagating High temperature Synthesis and Spark Plasma Sintering. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 655, 44-49.	5.6	45
5	SPS synthesis and consolidation of TiAl alloys from elemental powders: Microstructure evolution. Intermetallics, 2013, 36, 51-56.	3.9	41
6	Development of electric resistance sintering process for the fabrication of hard metals: Processing, microstructure and mechanical properties. International Journal of Refractory Metals and Hard Materials, 2017, 66, 88-94.	3.8	35
7	Microstructure and mechanical properties of gamma TiAl based alloys produced by combustion synthesis + compaction route. Intermetallics, 2008, 16, 1310-1316 of the microstructural and Thermoelectric Properties of the millimath	3.9	25
8	xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"> <mml:mrow><mml:msub><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mtext>GeTe</mml:mtext><mml:mo) 0="" 10="" 4<="" 50="" etqq0="" overlock="" rgbt="" td="" tf="" tj=""><td>15<i>7</i>2771 (str</td><td>etaloy="false":</td></mml:mo)></mml:mrow></mml:msub></mml:mrow>	15 <i>7</i> 2 7 71 (str	etaloy="false":
9	xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"> <mml:mrow><mml:msub><mml:mrow><m 172.<="" 2019,="" 9,="" by="" ers:="" final="" hard="" in="" metal="" metals,="" parameter="" processing="" production="" properties.="" roles="" td=""><td>2.3</td><td>5</td></m></mml:mrow></mml:msub></mml:mrow>	2.3	5
10	Fundamentals and Applications of Field Assisted Sintering Techniques (FAST)., 2022,, 272-280.		0