
Yijun Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4298785/publications.pdf Version: 2024-02-01

ΥΠΠΝ ΖΗΛΝΟ

#	Article	IF	CITATIONS
1	Exploring optoelectronic properties of C-doped GaAs for photocathode application from first-principles calculation. AIP Advances, 2022, 12, 015106.	0.6	1
2	Comparison of activation behavior of Cs-O and Cs-NF3-adsorbed GaAs(1 0 0)-β2(2Â×Â4) surface: From DFT simulation to experiment. Journal of Colloid and Interface Science, 2022, 613, 117-125.	5.0	9
3	Ultrafast responses of uniform- and gradient-doped GaAs photocathodes: from theory to experiment. , 2022, , .		1
4	Investigation of H+ beam radiation on photoelectric performance of GaAs photocathodes. , 2022, , .		1
5	Enhancement of near-infrared response for GaAs-based photocathode with laminated graded-bandgap structure: theory and experiment. Journal of Materials Research and Technology, 2022, 19, 2008-2017.	2.6	3
6	Effect of multilayer complex buffer layer structures on photoelectric performance of GaAs-based photocathodes. Optical and Quantum Electronics, 2022, 54, .	1.5	0
7	First-principles investigation of Cs-NF3 co-adsorption on GaAs(100)-β2(2Â×Â4) surface. Applied Surface Science, 2021, 535, 147691.	3.1	10
8	Effect of vacancy defects on photoelectric properties of K2CsSb photocathode. Optik, 2021, 232, 166555.	1.4	4
9	UV–Vis–NIR broadband response of GaAs-based photocathode with multilayer graded-band cascade structure. Superlattices and Microstructures, 2021, 156, 106957.	1.4	2
10	Photoelectron transportation dynamics in GaAs photocathodes. Journal of Applied Physics, 2021, 130, .	1.1	8
11	Exploration of Cs–O co-adsorption on GaAs(100) β2(2×4) surface at different sites from first-principles calculation. Materials Science in Semiconductor Processing, 2021, 134, 105996.	1.9	4
12	Activation practice of GaAs(100) photocathodes with current-driven Cs/O dispensers. , 2021, , .		0
13	Effect of excessive Cs and O on activation of GaAs(100) surface: From experiment to theory. Journal of Applied Physics, 2020, 128, .	1.1	11
14	Theoretical modeling and simulation-based assessment of graded-bandgap AlGaAs/GaAs electron-injection cathode. Ultramicroscopy, 2020, 219, 113121.	0.8	7
15	Pump-probe study of ultrafast response of GaAs photocathodes grown by MOCVD and MBE. , 2020, , .		3
16	Improved quantum efficiency and stability of GaAs photocathode using favorable illumination during activation. Ultramicroscopy, 2019, 202, 128-132.	0.8	14
17	Optimized chemical cleaning procedure for enhancing photoemission from GaAs photocathode. Materials Science in Semiconductor Processing, 2019, 91, 41-46.	1.9	20

18 Energy Bandgap Engineering of Transmission-Mode AlGaAs/GaAs Photocathode. , 2018, , .

1

YIJUN ZHANG

#	Article	IF	CITATIONS
19	Improved activation technique for preparing high-efficiency GaAs photocathodes. Optical Materials Express, 2017, 7, 3456.	1.6	20
20	Comparison of degradation and recaesiation between GaAs and AlGaAs photocathodes in an unbaked vacuum system. Applied Optics, 2017, 56, 2568.	2.1	8
21	Quantum efficiency of transmission-mode AlxGa1â^'xAs/GaAs photocathodes with graded-composition and exponential-doping structure. Optics Communications, 2016, 369, 50-55.	1.0	13
22	Differences in stability and repeatability between GaAs and GaAlAs photocathodes. Optics Communications, 2016, 380, 320-325.	1.0	5
23	Photoemission characteristics of thin GaAs-based heterojunction photocathodes. Journal of Applied Physics, 2015, 117, .	1.1	7
24	Resolution characteristics of graded doping and graded composition transmission-mode AlGaAs/GaAs photocathodes. Applied Optics, 2015, 54, 1414.	0.9	12
25	Photoemission from advanced heterostructured Al_xGa_1-xAs/GaAs photocathodes under multilevel built-in electric field. Optics Express, 2015, 23, 19478.	1.7	42
26	Theoretical revision of quantum efficiency formula for thin AlGaAs/GaAs photocathodes. , 2014, , .		3
27	Surface activation behavior of negative-electron-affinity exponential-doping GaAs photocathodes. Optics Communications, 2014, 321, 32-37.	1.0	13
28	Stability of negative electron affinity Ga ₀₃₇ Al ₀₆₃ As photocathodes in an ultrahigh vacuum system. Applied Optics, 2013, 52, 6272.	0.9	11
29	Research on Optical Properties for the Exponential-Doped Ga1-xAlxAs/GaAs Photocathode. , 2011, , .		Ο
30	High-efficiency graded band-gap Al _x Ga _{1â^'x} As/GaAs photocathodes grown by metalorganic chemical vapor deposition. Applied Physics Letters, 2011, 99, 101104.	1.5	45
31	Photoemission characteristics of different-structure reflection-mode GaAs photocathodes. Journal of Applied Physics, 2011, 110, .	1.1	35
32	Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes. Journal of Applied Physics, 2010, 108, 093108.	1.1	65
33	High quantum efficiency of depth grade doping negative-electron-affinity GaN photocathode. Applied Physics Letters, 2010, 97, .	1.5	18
34	Variation of spectral response for exponential-doped transmission-mode GaAs photocathodes in the preparation process. Applied Optics, 2010, 49, 3935.	2.1	45
35	Optimized calculation of the thickness of emission layer of NEA GaN semitransparent UV-photocathode. , 2010, , .		0
36	Evolution of surface potential barrier for negative-electron-affinity GaAs photocathodes. Journal of Applied Physics, 2009, 105, .	1.1	45

YIJUN ZHANG

#	Article	IF	CITATIONS
37	Annealing study of carrier concentration in gradient-doped GaAs/GaAlAs epilayers grown by molecular beam epitaxy. Applied Optics, 2009, 48, 1715.	2.1	14
38	Influence of exponential doping structure on the performance of GaAs photocathodes. Applied Optics, 2009, 48, 5445.	2.1	47
39	Photoemission from GaAs-based photocathodes with multilayer complex structures. International Journal of Modern Physics B, 0, , .	1.0	Ο