
Rainer Schreiber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4298734/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TMEM16A Induces MAPK and Contributes Directly to Tumorigenesis and Cancer Progression. Cancer Research, 2012, 72, 3270-3281.	0.9	252
2	Loss of TMEM16A Causes a Defect in Epithelial Ca2+-dependent Chloride Transport. Journal of Biological Chemistry, 2009, 284, 28698-28703.	3.4	213
3	Expression and Function of Epithelial Anoctamins. Journal of Biological Chemistry, 2010, 285, 7838-7845.	3.4	194
4	TMEM16 Proteins Produce Volume-regulated Chloride Currents That Are Reduced in Mice Lacking TMEM16A. Journal of Biological Chemistry, 2009, 284, 28571-28578.	3.4	159
5	Anoctamins are a family of Ca2+ activated Clâ° channels. Journal of Cell Science, 2012, 125, 4991-8.	2.0	153
6	Enhanced Expression of ANO1 in Head and Neck Squamous Cell Carcinoma Causes Cell Migration and Correlates with Poor Prognosis. PLoS ONE, 2012, 7, e43265.	2.5	135
7	Calmodulinâ€dependent activation of the epithelial calciumâ€dependent chloride channel TMEM16A. FASEB Journal, 2011, 25, 1058-1068.	0.5	129
8	Anoctamin 6 is an essential component of the outwardly rectifying chloride channel. Proceedings of the United States of America, 2011, 108, 18168-18172.	7.1	129
9	Anoctamin 6 mediates effects essential for innate immunity downstream of P2X7 receptors in macrophages. Nature Communications, 2015, 6, 6245.	12.8	127
10	Bestrophin and TMEM16—Ca2+ activated Clâ^' channels with different functions. Cell Calcium, 2009, 46, 233-241.	2.4	108
11	Bestrophin 1 is indispensable for volume regulation in human retinal pigment epithelium cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2630-9.	7.1	108
12	Anoctamins. Pflugers Archiv European Journal of Physiology, 2011, 462, 195-208.	2.8	103
13	Modulation of Ca2+-Activated Clâ^' Secretion by Basolateral K+ Channels in Human Normal and Cystic Fibrosis Airway Epithelia. Pediatric Research, 2003, 53, 608-618.	2.3	101
14	Epithelial Chloride Transport by CFTR Requires TMEM16A. Scientific Reports, 2017, 7, 12397.	3.3	100
15	Molecular functions of anoctamin 6 (TMEM16F): a chloride channel, cation channel, or phospholipid scramblase?. Pflugers Archiv European Journal of Physiology, 2014, 466, 407-414.	2.8	93
16	Differential effects of anoctamins on intracellular calcium signals. FASEB Journal, 2017, 31, 2123-2134.	0.5	91
17	Role of anoctamins in cancer and apoptosis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130096.	4.0	88
18	Bestrophin-1 Enables Ca2+-activated Clâ^' Conductance in Epithelia. Journal of Biological Chemistry, 2009, 284, 29405-29412	3.4	82

#	Article	IF	CITATIONS
19	TMEM16A is indispensable for basal mucus secretion in airways and intestine. FASEB Journal, 2019, 33, 4502-4512.	0.5	76
20	ER-localized bestrophin 1 activates Ca2+-dependent ion channels TMEM16A and SK4 possibly by acting as a counterion channel. Pflugers Archiv European Journal of Physiology, 2010, 459, 485-497.	2.8	75
21	Anoctamin 1 induces calcium-activated chloride secretion and proliferation of renal cyst–forming epithelial cells. Kidney International, 2014, 85, 1058-1067.	5.2	71
22	P2Y6 receptor mediates colonic NaCl secretion via differential activation of cAMP-mediated transport. Journal of Clinical Investigation, 2003, 111, 371-379.	8.2	69
23	Anoctamins support calcium-dependent chloride secretion by facilitating calcium signaling in adult mouse intestine. Pflugers Archiv European Journal of Physiology, 2015, 467, 1203-1213.	2.8	67
24	Lipid Peroxidation Drives Renal Cyst Growth In Vitro through Activation of TMEM16A. Journal of the American Society of Nephrology: JASN, 2019, 30, 228-242.	6.1	63
25	Calcium-dependent chloride conductance in epithelia: is there a contribution by Bestrophin?. Pflugers Archiv European Journal of Physiology, 2007, 454, 879-889.	2.8	62
26	Regulation of TMEM16A/ANO1 and TMEM16F/ANO6 ion currents and phospholipid scrambling by Ca ²⁺ and plasma membrane lipid. Journal of Physiology, 2018, 596, 217-229.	2.9	61
27	The calcium-activated chloride channel Anoctamin 1 contributes to the regulation of renal function. Kidney International, 2014, 85, 1369-1381.	5.2	60
28	Contribution of Anoctamins to Cell Survival and Cell Death. Cancers, 2019, 11, 382.	3.7	60
29	TMEM16A in Cystic Fibrosis: Activating or Inhibiting?. Frontiers in Pharmacology, 2019, 10, 3.	3.5	59
30	Niclosamide repurposed for the treatment of inflammatory airway disease. JCI Insight, 2019, 4, .	5.0	58
31	Hypoxia-Inducible Factor-1α Causes Renal Cyst Expansion through Calcium-Activated Chloride Secretion. Journal of the American Society of Nephrology: JASN, 2014, 25, 465-474.	6.1	57
32	Role of the Ca2+-activated Cl- channels bestrophin and anoctamin in epithelial cells. Biological Chemistry, 2011, 392, 125-34.	2.5	56
33	Expression and function of epithelial anoctamins. Experimental Physiology, 2012, 97, 184-192.	2.0	56
34	Modulating Ca2+ signals: a common theme for TMEM16, Ist2, and TMC. Pflugers Archiv European Journal of Physiology, 2016, 468, 475-490.	2.8	56
35	Survival protein anoctaminâ€6 controls multiple platelet responses including phospholipid scrambling, swelling, and protein cleavage. FASEB Journal, 2016, 30, 727-737.	0.5	52
36	Cellular volume regulation by anoctamin 6: Ca2+, phospholipase A2 and osmosensing. Pflugers Archiv European Journal of Physiology, 2016, 468, 335-349.	2.8	50

#	Article	IF	CITATIONS
37	A Coding Variant of ANO10, Affecting Volume Regulation of Macrophages, Is Associated with Borrelia Seropositivity. Molecular Medicine, 2015, 21, 26-37.	4.4	49
38	Purinergic P2Y ₆ Receptors Induce Ca ²⁺ and CFTR Dependent Cl ⁻ Secretion in Mouse Trachea. Cellular Physiology and Biochemistry, 2005, 16, 99-108.	1.6	48
39	Contribution of TMEM16F to pyroptotic cell death. Cell Death and Disease, 2018, 9, 300.	6.3	48
40	Cyst growth in ADPKD is prevented by pharmacological and genetic inhibition of TMEM16A in vivo. Nature Communications, 2020, 11, 4320.	12.8	46
41	Cellular defects by deletion of ANO10 are due to deregulated local calcium signaling. Cellular Signalling, 2017, 30, 41-49.	3.6	45
42	Clâ^' channels in apoptosis. European Biophysics Journal, 2016, 45, 599-610.	2.2	41
43	Compartmentalized crosstalk of CFTR and TMEM16A (ANO1) through EPAC1 and ADCY1. Cellular Signalling, 2018, 44, 10-19.	3.6	41
44	Pharmacological Inhibition and Activation of the Ca2+ Activated Clâ^' Channel TMEM16A. International Journal of Molecular Sciences, 2020, 21, 2557.	4.1	41
45	Differential contribution of SLC26A9 to Cl ^{â^'} conductance in polarized and nonâ€polarized epithelial cells. Journal of Cellular Physiology, 2012, 227, 2323-2329.	4.1	40
46	Ca2+ signals, cell membrane disintegration, and activation of TMEM16F during necroptosis. Cellular and Molecular Life Sciences, 2017, 74, 173-181.	5.4	39
47	Bestrophin 1 Promotes Epithelial-to-mesenchymal Transition of Renal Collecting Duct Cells. Journal of the American Society of Nephrology: JASN, 2009, 20, 1556-1564.	6.1	38
48	CFTR is activated through stimulation of purinergic P2Y2 receptors. Pflugers Archiv European Journal of Physiology, 2009, 457, 1373-1380.	2.8	38
49	Control of <scp>TMEM16A</scp> by <scp>INO</scp> â€4995 and other inositolphosphates. British Journal of Pharmacology, 2013, 168, 253-265.	5.4	37
50	Non-essential contribution of LRRC8A to volume regulation. Pflugers Archiv European Journal of Physiology, 2016, 468, 805-816.	2.8	36
51	Airway epithelial cells—Functional links between CFTR and anoctamin dependent Clâ^' secretion. International Journal of Biochemistry and Cell Biology, 2012, 44, 1897-1900.	2.8	35
52	Anoctamin-6 Controls Bone Mineralization by Activating the Calcium Transporter NCX1. Journal of Biological Chemistry, 2015, 290, 6270-6280.	3.4	35
53	TMEM16F/Anoctamin 6 in Ferroptotic Cell Death. Cancers, 2019, 11, 625.	3.7	35
54	Impaired Renal HCO3 - Excretion in Cystic Fibrosis. Journal of the American Society of Nephrology: JASN, 2020, 31, 1711-1727.	6.1	35

#	Article	IF	CITATIONS
55	Mechanisms for the inhibition of amiloride-sensitive Na+ absorption by extracellular nucleotides in mouse trachea. Pflugers Archiv European Journal of Physiology, 2002, 444, 220-226.	2.8	33
56	F508del-CFTR increases intracellular Ca2+ signaling that causes enhanced calcium-dependent Clâ^' conductance in cystic fibrosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 1385-1392.	3.8	32
57	CFTR supports cell death through ROS-dependent activation of TMEM16F (anoctamin 6). Pflugers Archiv European Journal of Physiology, 2018, 470, 305-314.	2.8	32
58	Plasma membrane–localized TMEM16 proteins are indispensable for expression of CFTR. Journal of Molecular Medicine, 2019, 97, 711-722.	3.9	31
59	Flagellin of Pseudomonas aeruginosa inhibits Na + transport in airway epithelia. FASEB Journal, 2006, 20, 545-546.	0.5	30
60	Relationship between TMEM16A/anoctamin 1 and LRRC8A. Pflugers Archiv European Journal of Physiology, 2016, 468, 1751-1763.	2.8	29
61	Involvement of Ca2+ Activated Cl- Channel Ano6 in Platelet Activation and Apoptosis. Cellular Physiology and Biochemistry, 2015, 37, 1934-1944.	1.6	25
62	P2Y2R is a direct target of HIF-1α and mediates secretion-dependent cyst growth of renal cyst-forming epithelial cells. Purinergic Signalling, 2016, 12, 687-695.	2.2	25
63	TMEM16A Mediates Mucus Production in Human Airway Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2021, 64, 50-58.	2.9	25
64	Anoctamin-6 regulates ADAM sheddase function. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 1598-1610.	4.1	24
65	Allergen-induced airway hyperresponsiveness is absent in ecto-5′-nucleotidase (CD73)-deficient mice. Pflugers Archiv European Journal of Physiology, 2008, 457, 431-440.	2.8	23
66	TMC8 (EVER2) attenuates intracellular signaling by Zn2+ and Ca2+ and suppresses activation of Clâ^' currents. Cellular Signalling, 2014, 26, 2826-2833.	3.6	22
67	A novel microscopy-based assay identifies extended synaptotagmin-1 (ESYT1) as a positive regulator of anoctamin 1 traffic. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 421-431.	4.1	19
68	Functional assembly and purinergic activation of bestrophins. Pflugers Archiv European Journal of Physiology, 2009, 458, 431-441.	2.8	17
69	Transport properties in CFTRâ^'/â^' knockout piglets suggest normal airway surface liquid pH and enhanced amiloride-sensitive Na+ absorption. Pflugers Archiv European Journal of Physiology, 2020, 472, 1507-1519.	2.8	17
70	P. aeruginosa Induced Lipid Peroxidation Causes Ferroptotic Cell Death in Airways. Cellular Physiology and Biochemistry, 2021, 55, 590-604.	1.6	17
71	Glucose promotes secretion-dependent renal cyst growth. Journal of Molecular Medicine, 2016, 94, 107-117.	3.9	16
72	CLCA1 Regulates Airway Mucus Production and Ion Secretion Through TMEM16A. International Journal of Molecular Sciences, 2021, 22, 5133.	4.1	16

5

#	Article	IF	CITATIONS
73	The molecular mechanism of CFTR―and secretinâ€dependent renal bicarbonate excretion. Journal of Physiology, 2021, 599, 3003-3011.	2.9	15
74	Mucus Release and Airway Constriction by TMEM16A May Worsen Pathology in Inflammatory Lung Disease. International Journal of Molecular Sciences, 2021, 22, 7852.	4.1	15
75	Regulation of TMEM16A by CK2 and Its Role in Cellular Proliferation. Cells, 2020, 9, 1138.	4.1	13
76	TMEM16A drives renal cyst growth by augmenting Ca2+ signaling in M1 cells. Journal of Molecular Medicine, 2020, 98, 659-671.	3.9	13
77	Expression of anoctamins in retinal pigment epithelium (RPE). Pflugers Archiv European Journal of Physiology, 2016, 468, 1921-1929.	2.8	12
78	Targeting of Intracellular TMEM16 Proteins to the Plasma Membrane and Activation by Purinergic Signaling. International Journal of Molecular Sciences, 2020, 21, 4065.	4.1	11
79	TMEM16A deficiency: a potentially fatal neonatal disease resulting from impaired chloride currents. Journal of Medical Genetics, 2021, 58, 247-253.	3.2	10
80	Gender-Dependent Phenotype in Polycystic Kidney Disease Is Determined by Differential Intracellular Ca2+ Signals. International Journal of Molecular Sciences, 2021, 22, 6019.	4.1	10
81	The chloride channel CFTR is not required for cyst growth in an ADPKD mouse model. FASEB Journal, 2021, 35, e21897.	0.5	9
82	IRAG2 Interacts with IP3-Receptor Types 1, 2, and 3 and Regulates Intracellular Ca2+ in Murine Pancreatic Acinar Cells. International Journal of Molecular Sciences, 2021, 22, 13409.	4.1	9
83	Loss of PKD1 and PKD2 share common effects on intracellular Ca2+ signaling. Cell Calcium, 2021, 97, 102413.	2.4	8
84	Expression of SLC26A9 in Airways and Its Potential Role in Asthma. International Journal of Molecular Sciences, 2022, 23, 2998.	4.1	8
85	Airway Delivery of Hydrogel-Encapsulated Niclosamide for the Treatment of Inflammatory Airway Disease. International Journal of Molecular Sciences, 2022, 23, 1085.	4.1	7
86	Chloride secretion, anoctamin 1 and Ca2+signaling. Channels, 2014, 8, 387-388.	2.8	6
87	Ca2+ Dependence of Volume-Regulated VRAC/LRRC8 and TMEM16A Cl– Channels. Frontiers in Cell and Developmental Biology, 2020, 8, 596879.	3.7	6
88	Influence of Anoctamin-4 and -9 on ADAM10 and ADAM17 Sheddase Function. Membranes, 2022, 12, 123.	3.0	6
89	Regulation and Function of TMEM16F in Renal Podocytes. International Journal of Molecular Sciences, 2018, 19, 1798.	4.1	5
90	Calmodulin-Dependent Regulation of Overexpressed but Not Endogenous TMEM16A Expressed in Airway Epithelial Cells. Membranes, 2021, 11, 723.	3.0	5

#	Article	IF	CITATIONS
91	GABA, but Not Bestrophin-1, Is Localized in Astroglial Processes in the Mouse Hippocampus and the Cerebellum. Frontiers in Molecular Neuroscience, 2020, 13, 135.	2.9	4