Gill Sang Han

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4298588/gill-sang-han-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

71	2,599	25	50
papers	citations	h-index	g-index
76	2,964 ext. citations	9.9	5.09
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
71	Photophysical, optical, and photocatalytic hydrogen production properties of layered-type BaNb2-xTaxP2O11 (x = 0, 0.5, 1.0, 1.5, and 2.0) compounds. <i>Journal of Materials Science and Technology</i> , 2022 , 98, 26-32	9.1	O
7°	Defect Healing in FAPb(I 1- x Br x) 3 Perovskites: Multifunctional Fluorinated Sulfonate Surfactant Anchoring Enables >21%[Modules with Improved Operation Stability (Adv. Energy Mater. 20/2022). Advanced Energy Materials, 2022, 12, 2270083	21.8	
69	Stable and Efficient Methylammonium-, Cesium-, and Bromide-Free Perovskite Solar Cells by In-Situ Interlayer Formation. <i>Advanced Functional Materials</i> , 2021 , 31, 2007520	15.6	19
68	Recent cutting-edge strategies for flexible perovskite solar cells toward commercialization. <i>Chemical Communications</i> , 2021 , 57, 11604-11612	5.8	2
67	Formamidine disulfide oxidant as a localised electron scavenger for >20% perovskite solar cell modules. <i>Energy and Environmental Science</i> , 2021 , 14, 4903-4914	35.4	20
66	In-Situ Nano-Auger Probe of Chloride-Ions during CHNHPbICl Perovskite Formation. <i>Materials</i> , 2021 , 14,	3.5	2
65	Synthesis and adsorption properties of gelatin-conjugated hematite (FeO) nanoparticles for lead removal from wastewater. <i>Journal of Hazardous Materials</i> , 2021 , 416, 125696	12.8	10
64	Copper phosphate compounds with visible-to-near-infrared-active photo-fenton-like photocatalytic properties. <i>Journal of the American Ceramic Society</i> , 2020 , 103, 5120-5128	3.8	9
63	Tailored 2D/3D Halide Perovskite Heterointerface for Substantially Enhanced Endurance in Conducting Bridge Resistive Switching Memory. <i>ACS Applied Materials & District Resistive Switching Memory</i> . 12, 1703	39 ⁹ 1 7 04	15 ³¹
62	Revisiting Effects of Ligand-Capped Nanocrystals in Perovskite Solar Cells. <i>ACS Energy Letters</i> , 2020 , 5, 1032-1034	20.1	16
61	Real Impacts of Ligand-Capped Nanocrystals in Perovskite Solar Cells. <i>ECS Meeting Abstracts</i> , 2020 , MA2020-02, 1901-1901	O	
60	Chlorine-modified SnO2 electron transport layer for high-efficiency perovskite solar cells. <i>Informa</i> Materily, 2020 , 2, 401-408	23.1	30
59	Enhancing Solar Water Splitting of Textured BiVO4 by Dual Effect of a Plasmonic Silver Nanoshell: Plasmon-Induced Light Absorption and Enhanced Hole Transport. <i>ACS Applied Energy Materials</i> , 2020 , 3, 11886-11892	6.1	4
58	Flexible Perovskite Solar Cells. <i>Joule</i> , 2019 , 3, 1850-1880	27.8	146
57	Spin-Coating Process for 10 cm 🛮 0 cm Perovskite Solar Modules Enabled by Self-Assembly of SnO2 Nanocolloids. <i>ACS Energy Letters</i> , 2019 , 4, 1845-1851	20.1	34
56	Multi-functional transparent electrode for reliable flexible perovskite solar cells. <i>Journal of Power Sources</i> , 2019 , 435, 226768	8.9	15
55	Ultimate Charge Extraction of Monolayer PbS Quantum Dot for Observation of Multiple Exciton Generation. <i>ChemPhysChem</i> , 2019 , 20, 2657-2661	3.2	

(2016-2019)

54	Safety and efficacy of tacrolimus-coated silicone plates as an alternative to mitomycin C in a rabbit model of conjunctival fibrosis. <i>PLoS ONE</i> , 2019 , 14, e0219194	3.7	O
53	Controlled oxidation of Ni for stress-free hole transport layer of large-scale perovskite solar cells. <i>Nano Research</i> , 2019 , 12, 3089-3094	10	6
52	New down-converter for UV-stable perovskite solar cells: Phosphor-in-glass. <i>Journal of Power Sources</i> , 2018 , 389, 135-139	8.9	14
51	Highly Bendable Flexible Perovskite Solar Cells on a Nanoscale Surface Oxide Layer of Titanium Metal Plates. <i>ACS Applied Materials & Diterfaces</i> , 2018 , 10, 4697-4704	9.5	37
50	Electron extraction mechanism in low hysteresis perovskite solar cells using single crystal TiO2 nanorods. <i>Solar Energy</i> , 2018 , 167, 251-257	6.8	7
49	Correlation between photoactivity of TiO2 and diffusion of Na+ ions from soda lime glass. <i>Materials Letters</i> , 2018 , 228, 351-355	3.3	4
48	In-Situ Formed Type I Nanocrystalline Perovskite Film for Highly Efficient Light-Emitting Diode. <i>ACS Nano</i> , 2017 , 11, 3311-3319	16.7	134
47	Low-Temperature Modification of ZnO Nanoparticles Film for Electron-Transport Layers in Perovskite Solar Cells. <i>ChemSusChem</i> , 2017 , 10, 2425-2430	8.3	24
46	Infiltration of methylammonium metal halide in highly porous membranes using sol-gel-derived coating method. <i>Applied Surface Science</i> , 2017 , 416, 96-102	6.7	9
45	Dual function of a high-contrast hydrophobicBydrophilic coating for enhanced stability of perovskite solar cells in extremely humid environments. <i>Nano Research</i> , 2017 , 10, 3885-3895	10	18
44	BiVO/WO/SnO Double-Heterojunction Photoanode with Enhanced Charge Separation and Visible-Transparency for Bias-Free Solar Water-Splitting with a Perovskite Solar Cell. <i>ACS Applied Materials & Description of Materials (Control of Materials & Description of Materials (Control of Materials & Description of Materials & </i>	9.5	121
43	Highly stable perovskite solar cells in humid and hot environment. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 14733-14740	13	40
42	Nanodome Structured BiVO4/GaOxN1⊠ Photoanode for Solar Water Oxidation. <i>Advanced Materials Interfaces</i> , 2017 , 4, 1700323	4.6	22
41	Substrate effects on photoluminescence and low temperature phase transition of methylammonium lead iodide hybrid perovskite thin films. <i>Applied Physics Letters</i> , 2017 , 111, 023902	3.4	11
40	Methylammonium lead iodide perovskite-graphene hybrid channels in flexible broadband phototransistors. <i>Carbon</i> , 2016 , 105, 353-361	10.4	98
39	Indium Indium Information Indium Indi	8.3	30
38	Epitaxial Anatase TiO2Nanorods Array with Reduced Interfacial Charge Recombination for Solar Water Splitting. <i>Journal of the Electrochemical Society</i> , 2016 , 163, H469-H473	3.9	7
37	Influence of annealing atmosphere on the electrical conductivity of copper nanoparticle films. <i>Electronic Materials Letters</i> , 2016 , 12, 338-342	2.9	1

36	Design of water stable green-emitting CH3NH3PbBr3 perovskite luminescence materials with encapsulation for applications in optoelectronic device. <i>Chemical Engineering Journal</i> , 2016 , 306, 791-7	9 5 4·7	12
35	Green-emitting Lu3Al5O12:Ce3+ phosphor as a visible light amplifier for dye-sensitized solar cells. <i>RSC Advances</i> , 2015 , 5, 24737-24741	3.7	15
34	Facile transfer fabrication of transparent, conductive and flexible In2O3:Sn (ITO) nanowire arrays electrode via selective wet-etching ZnO sacrificial layer. <i>Materials Letters</i> , 2015 , 158, 304-308	3.3	6
33	The novel design of a remote phosphor ceramic plate for white light generation in high power LEDs. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 6148-6152	7.1	26
32	Niobium Doping Effects on TiO2 Mesoscopic Electron Transport Layer-Based Perovskite Solar Cells. <i>ChemSusChem</i> , 2015 , 8, 2392-8	8.3	123
31	Ultrarapid and ultrasensitive electrical detection of proteins in a three-dimensional biosensor with high capture efficiency. <i>Nanoscale</i> , 2015 , 7, 9844-51	7.7	17
30	Direct Low-Temperature Growth of Single-Crystalline Anatase TiO2 Nanorod Arrays on Transparent Conducting Oxide Substrates for Use in PbS Quantum-Dot Solar Cells. <i>ACS Applied Materials & Interfaces</i> , 2015 , 7, 10324-30	9.5	12
29	Reduced Graphene Oxide/Mesoporous TiO2 Nanocomposite Based Perovskite Solar Cells. <i>ACS Applied Materials & District Materials & Distri</i>	9.5	153
28	Epitaxial 1D electron transport layers for high-performance perovskite solar cells. <i>Nanoscale</i> , 2015 , 7, 15284-90	7.7	44
27	Observation of anatase nanograins crystallizing from anodic amorphous TiO2 nanotubes. <i>CrystEngComm</i> , 2015 , 17, 7346-7353	3.3	12
26	Screening effect on photovoltaic performance in ferroelectric CH3NH3PbI3 perovskite thin films. Journal of Materials Chemistry A, 2015 , 3, 20352-20358	13	21
25	Design of a thermally stable rGO-embedded remote phosphor for applications in white LEDs. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 235-238	7.1	11
24	Enhanced luminous efficiency of deep red emitting K2SiF6:Mn4+ phosphor dependent on KF ratio for warm-white LED. <i>Materials Letters</i> , 2015 , 141, 27-30	3.3	44
23	Retarding charge recombination in perovskite solar cells using ultrathin MgO-coated TiO2 nanoparticulate films. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 9160-9164	13	142
22	Highly efficient and bending durable perovskite solar cells: toward a wearable power source. <i>Energy and Environmental Science</i> , 2015 , 8, 916-921	35.4	518
21	Low Temperature Synthesis of Rutile TiO2 Nanocrystals and Their Photovoltaic and Photocatalytic Properties. <i>Journal of Nanoscience and Nanotechnology</i> , 2015 , 15, 4516-21	1.3	11
20	Facile Synthesis and Enhancement of Luminescence Properties of Red-Emitting Sr2Si5N8 : Eu2+Phosphor. <i>Science of Advanced Materials</i> , 2015 , 7, 1485-1487	2.3	6
19	Cerium-doped yttrium aluminum garnet hollow shell phosphors synthesized via the Kirkendall effect. ACS Applied Materials & amp; Interfaces, 2014, 6, 1145-51	9.5	14

18	Study on the enhanced and stable field emission behavior of a novel electrosprayed Al-doped ZnO bilayer film. <i>RSC Advances</i> , 2014 , 4, 9072	3.7	18
17	Transparent-conducting-oxide nanowire arrays for efficient photoelectrochemical energy conversion. <i>Nanoscale</i> , 2014 , 6, 8649-55	7.7	5
16	Polyethylenimine-assisted growth of high-aspect-ratio nitrogen-doped ZnO (NZO) nanorod arrays and their effect on performance of dye-sensitized solar cells. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 10028-43	9.5	21
15	Preparation and luminescence characteristics of single-phase rod-like BaSi2O2N2:Eu2+ phosphor with new synthetic route for white light generation. <i>Materials Letters</i> , 2014 , 129, 178-181	3.3	10
14	In2O3:Sn/TiO2/CdS heterojunction nanowire array photoanode in photoelectrochemical cells. <i>International Journal of Hydrogen Energy</i> , 2014 , 39, 17473-17480	6.7	13
13	3-D TiO2 nanoparticle/ITO nanowire nanocomposite antenna for efficient charge collection in solid state dye-sensitized solar cells. <i>Nanoscale</i> , 2014 , 6, 6127-32	7.7	29
12	A Simple Method To Control Morphology of Hydroxyapatite Nano- and Microcrystals by Altering Phase Transition Route. <i>Crystal Growth and Design</i> , 2013 , 13, 3414-3418	3.5	36
11	A simple self-assembly route to single crystalline SnO2 nanorod growth by oriented attachment for dye sensitized solar cells. <i>Nanoscale</i> , 2013 , 5, 1188-94	7.7	71
10	Functionalization of nanomaterials by non-thermal large area atmospheric pressure plasmas: application to flexible dye-sensitized solar cells. <i>Nanoscale</i> , 2013 , 5, 7825-30	7.7	27
9	TiO2 nanocrystals shell layer on highly conducting indium tin oxide nanowire for photovoltaic devices. <i>Nanoscale</i> , 2013 , 5, 3520-6	7.7	11
8	Mesoporous TiO2 nanowires as bi-functional materials for dye-sensitized solar cells. <i>Electrochimica Acta</i> , 2012 , 74, 83-86	6.7	11
7	Crystallographically preferred oriented TiO2 nanotube arrays for efficient photovoltaic energy conversion. <i>Energy and Environmental Science</i> , 2012 , 5, 7989	35.4	82
6	Nanowire-Based Three-Dimensional Transparent Conducting Oxide Electrodes for Extremely Fast Charge Collection. <i>Advanced Energy Materials</i> , 2011 , 1, 829-835	21.8	48
5	Photophysical and Photocatalytic Properties of Ag2M2O7 (M=Mo, W). <i>Journal of the American Ceramic Society</i> , 2010 , 93, 3867-3872	3.8	37
4	Simple large-scale synthesis of hydroxyapatite nanoparticles: in situ observation of crystallization process. <i>Langmuir</i> , 2010 , 26, 384-8	4	40
3	Correlation of anatase particle size with photocatalytic properties. <i>Physica Status Solidi (A)</i> Applications and Materials Science, 2010 , 207, 2288-2291	1.6	14
2	All-in-One Lewis Base for Enhanced Precursor and Device Stability in Highly Efficient Perovskite Solar Cells. <i>ACS Energy Letters</i> ,3425-3434	20.1	9
1	Defect Healing in FAPb(I 1- x Br x) 3 Perovskites: Multifunctional Fluorinated Sulfonate Surfactant Anchoring Enables >21% Modules with Improved Operation Stability. <i>Advanced Energy Materials</i> ,220	00632	5