Sarah M Senf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4298492/publications.pdf Version: 2024-02-01

SADAH M SENE

#	Article	IF	CITATIONS
1	Hsp70 overexpression inhibits NFâ€̂₽B and Foxo3a transcriptional activities and prevents skeletal muscle atrophy. FASEB Journal, 2008, 22, 3836-3845.	0.2	255
2	Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy. FASEB Journal, 2012, 26, 987-1000.	0.2	163
3	FOXO signaling is required for disuse muscle atrophy and is directly regulated by Hsp70. American Journal of Physiology - Cell Physiology, 2010, 298, C38-C45.	2.1	153
4	Rosâ€mediated activation of NFâ€₽̂B and Foxo during muscle disuse. Muscle and Nerve, 2010, 41, 110-113.	1.0	101
5	Loss of the Inducible Hsp70 Delays the Inflammatory Response to Skeletal Muscle Injury and Severely Impairs Muscle Regeneration. PLoS ONE, 2013, 8, e62687.	1.1	96
6	HDAC1 activates FoxO and is both sufficient and required for skeletal muscle atrophy. Journal of Cell Science, 2014, 127, 1441-53.	1.2	95
7	p300 Acetyltransferase activity differentially regulates the localization and activity of the FOXO homologues in skeletal muscle. American Journal of Physiology - Cell Physiology, 2011, 300, C1490-C1501.	2.1	93
8	Genome-wide identification of FoxO-dependent gene networks in skeletal muscle during C26 cancer cachexia. BMC Cancer, 2014, 14, 997.	1.1	88
9	Skeletal muscle heat shock protein 70: diverse functions and therapeutic potential for wasting disorders. Frontiers in Physiology, 2013, 4, 330.	1.3	77
10	Hsp27 inhibits IKKβâ€induced NFâ€Î°Î• activity and skeletal muscle atrophy. FASEB Journal, 2009, 23, 3415-3423.	0.2	75
11	Tumourâ€derived leukaemia inhibitory factor is a major driver of cancer cachexia and morbidity in C26 tumourâ€bearing mice. Journal of Cachexia, Sarcopenia and Muscle, 2018, 9, 1109-1120.	2.9	63
12	Inhibition of IkappaB kinase alpha (IKKα) or IKKbeta (IKKβ) plus forkhead box O (Foxo) abolishes skeletal muscle atrophy. Biochemical and Biophysical Research Communications, 2011, 405, 491-496.	1.0	58
13	Skeletal Muscle Fibrosis in Pancreatic Cancer Patients with Respect to Survival. JNCI Cancer Spectrum, 2018, 2, pky043.	1.4	54
14	IL-8 Released from Human Pancreatic Cancer and Tumor-Associated Stromal Cells Signals through a CXCR2-ERK1/2 Axis to Induce Muscle Atrophy. Cancers, 2019, 11, 1863.	1.7	38
15	A clinically applicable muscular index predicts long-term survival in resectable pancreatic cancer. Surgery, 2017, 161, 930-938.	1.0	36
16	Identification of the Acetylation and Ubiquitin-Modified Proteome during the Progression of Skeletal Muscle Atrophy. PLoS ONE, 2015, 10, e0136247.	1.1	35
17	Orthotopic Patient-Derived Pancreatic Cancer Xenografts Engraft Into the Pancreatic Parenchyma, Metastasize, and Induce Muscle Wasting to Recapitulate the Human Disease. Pancreas, 2017, 46, 813-819.	0.5	33
18	Mas Receptor Activation Slows Tumor Growth and Attenuates Muscle Wasting in Cancer. Cancer Research, 2019, 79, 706-719.	0.4	28

SARAH M SENF

#	Article	IF	CITATIONS
19	Distinct cachexia profiles in response to human pancreatic tumours in mouse limb and respiratory muscle. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11, 820-837.	2.9	28
20	Transcriptional regulation of myotrophic actions by testosterone and trenbolone on and rogen-responsive muscle. Steroids, 2014, 87, 59-66.	0.8	27
21	MEF2c-Dependent Downregulation of Myocilin Mediates Cancer-Induced Muscle Wasting and Associates with Cachexia in Patients with Cancer. Cancer Research, 2020, 80, 1861-1874.	0.4	27
22	Human pancreatic cancer xenografts recapitulate key aspects of cancer cachexia. Oncotarget, 2017, 8, 1177-1189.	0.8	26
23	Inducible HSP70 Is Critical in Preventing the Aggregation and Enhancing the Processing of PMP22. ASN Neuro, 2015, 7, 175909141556990.	1.5	24
24	FoxP1 is a transcriptional repressor associated with cancer cachexia that induces skeletal muscle wasting and weakness. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12, 421-442.	2.9	19
25	Local and Systemic Cytokine Profiling for Pancreatic Ductal Adenocarcinoma to Study Cancer Cachexia in an Era of Precision Medicine. International Journal of Molecular Sciences, 2018, 19, 3836.	1.8	13
26	Nicotine Induces IL-8 Secretion from Pancreatic Cancer Stroma and Worsens Cancer-Induced Cachexia. Cancers, 2020, 12, 329.	1.7	13
27	The Florida Pancreas Collaborative Next-Generation Biobank: Infrastructure to Reduce Disparities and Improve Survival for a Diverse Cohort of Patients with Pancreatic Cancer. Cancers, 2021, 13, 809.	1.7	7
28	Depleting Ly6G Positive Myeloid Cells Reduces Pancreatic Cancer-Induced Skeletal Muscle Atrophy. Cells, 2022, 11, 1893.	1.8	6
29	Determination of Gene Promoter Activity in Skeletal Muscles In Vivo. Methods in Molecular Biology, 2012, 798, 461-472	0.4	4