
Jing-Jing Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4298259/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recruitment of Phosphatase PP2A by RACK1 Adaptor Protein Deactivates Transcription Factor IRF3 and Limits Type I Interferon Signaling. Immunity, 2014, 40, 515-529.	14.3	94
2	RACK1 Promotes Non-small-cell Lung Cancer Tumorigenicity through Activating Sonic Hedgehog Signaling Pathway. Journal of Biological Chemistry, 2012, 287, 7845-7858.	3.4	79
3	Chromatin remodeling factor ARID2 suppresses hepatocellular carcinoma metastasis via DNMT1-Snail axis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4770-4780.	7.1	76
4	Chemerin suppresses hepatocellular carcinoma metastasis through CMKLR1-PTEN-Akt axis. British Journal of Cancer, 2018, 118, 1337-1348.	6.4	62
5	FABP4 suppresses proliferation and invasion of hepatocellular carcinoma cells and predicts a poor prognosis for hepatocellular carcinoma. Cancer Medicine, 2018, 7, 2629-2640.	2.8	55
6	Sorafenib enriches epithelial cell adhesion molecule–positive tumor initiating cells and exacerbates a subtype of hepatocellular carcinoma through TSC2â€AKT cascade. Hepatology, 2015, 62, 1791-1803.	7.3	54
7	Triosephosphate isomerase 1 suppresses growth, migration and invasion of hepatocellular carcinoma cells. Biochemical and Biophysical Research Communications, 2017, 482, 1048-1053.	2.1	44
8	RACK1 modulates NF-κB activation by interfering with the interaction between TRAF2 and the IKK complex. Cell Research, 2014, 24, 359-371.	12.0	42
9	hPCL3s Promotes Hepatocellular Carcinoma Metastasis by Activating β-Catenin Signaling. Cancer Research, 2018, 78, 2536-2549.	0.9	34
10	Cleavage of focal adhesion kinase (FAK) is essential in adipocyte differentiation. Biochemical and Biophysical Research Communications, 2007, 357, 648-654.	2.1	33
11	PRMT1 Promoted HCC Growth and Metastasis In Vitro and In Vivo via Activating the STAT3 Signalling Pathway. Cellular Physiology and Biochemistry, 2018, 47, 1643-1654.	1.6	33
12	CHML promotes liver cancer metastasis by facilitating Rab14 recycle. Nature Communications, 2019, 10, 2510.	12.8	32
13	Iron overload in hereditary tyrosinemia type 1 induces liver injury through the Sp1/Tfr2/hepcidin axis. Journal of Hepatology, 2016, 65, 137-145.	3.7	22
14	BMP10 suppresses hepatocellular carcinoma progression via PTPRS–STAT3 axis. Oncogene, 2019, 38, 7281-7293.	5.9	19
15	Liver cancer: WISP3 suppresses hepatocellular carcinoma progression by negative regulation of βâ€catenin/TCF/LEF signalling. Cell Proliferation, 2019, 52, e12583.	5.3	18
16	PPDPF alleviates hepatic steatosis through inhibition of mTOR signaling. Nature Communications, 2021, 12, 3059.	12.8	18
17	Targeting USP9X–AMPK Axis in ARID1A-Deficient Hepatocellular Carcinoma. Cellular and Molecular Gastroenterology and Hepatology, 2022, 14, 101-127.	4.5	17
18	Two Novel Long Noncoding RNAs – RP11-296E3.2 and LEF1-AS1can – Separately Serve as Diagnostic and Prognostic Bio-Markers of Metastasis in Colorectal Cancer. Medical Science Monitor, 2019, 25, 7042-7051.	1.1	14

Jing-Jing Li

#	Article	IF	CITATIONS
19	Clinicopathological Characteristics and Prognosis of Signet Ring Gastric Cancer: A Population-Based Study. Frontiers in Oncology, 2021, 11, 580545.	2.8	13
20	Ochratoxin A Induces Steatosis via PPARÎ ³ -CD36 Axis. Toxins, 2021, 13, 802.	3.4	12
21	Antifungal agent Terbinafine restrains tumor growth in preclinical models of hepatocellular carcinoma via AMPK-mTOR axis. Oncogene, 2021, 40, 5302-5313.	5.9	11
22	Epithelial Vâ€like antigen 1 promotes hepatocellular carcinoma growth and metastasis via the ERBBâ€PI3Kâ€AKT pathway. Cancer Science, 2020, 111, 1500-1513.	3.9	11
23	Systemic Inflammatory Markers of Resectable Colorectal Cancer Patients with Different Mismatch Repair Gene Status. Cancer Management and Research, 2021, Volume 13, 2925-2935.	1.9	5
24	NET1 promotes HCC growth and metastasis in vitro and in vivo via activating the Akt signaling pathway. Aging, 2021, 13, 10672-10687.	3.1	5
25	Expression levels of EPHB4, EFNB2 and caspase‑8 are associated with clinicopathological features and progression of esophageal squamous cell cancer. Oncology Letters, 2020, 19, 917-929.	1.8	5
26	Clinicopathologic characteristics of resectable colorectal cancer with mismatch repair protein defects in Chinese population. Medicine (United States), 2020, 99, e20554.	1.0	4
27	Scinderin suppresses cell proliferation and predicts the poor prognosis of hepatocellular carcinoma. Oncology Letters, 2020, 19, 2011-2020.	1.8	4
28	INTS6 promotes colorectal cancer progression by activating of AKT and ERK signaling. Experimental Cell Research, 2021, 407, 112826.	2.6	1
29	Associations of Clinical and Molecular Characteristics with the Response to Immune Checkpoint Blockade in Advanced Gastric Cancers. Journal of Oncology, 2022, 2022, 1-10.	1.3	Ο