Arend L Schwab

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/429803/publications.pdf

Version: 2024-02-01

64 papers

2,508 citations

304743 22 h-index 233421 45 g-index

67 all docs

67 docs citations

67 times ranked

1595 citing authors

#	Article	lF	CITATIONS
1	Linearized dynamics equations for the balance and steer of a bicycle: a benchmark and review. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2007, 463, 1955-1982.	2.1	261
2	A comparison of revolute joint clearance models in the dynamic analysis of rigid and elastic mechanical systems. Mechanism and Machine Theory, 2002, 37, 895-913.	4.5	205
3	The influence of the biarticularity of the gastrocnemius muscle on vertical-jumping achievement. Journal of Biomechanics, 1993, 26, 1-8.	2.1	186
4	How to keep from falling forward: elementary swing leg action for passive dynamic walkers., 2005, 21, 393-401.		182
5	The safety of electrically assisted bicycles compared to classic bicycles. Accident Analysis and Prevention, 2014, 73, 174-180.	5.7	157
6	A Bicycle Can Be Self-Stable Without Gyroscopic or Caster Effects. Science, 2011, 332, 339-342.	12.6	133
7	Passive dynamic walking model with upper body. Robotica, 2004, 22, 681-688.	1.9	131
8	Adding an Upper Body to Passive Dynamic Walking Robots by Means of a Bisecting Hip Mechanism. , 2007, 23, 112-123.		100
9	A 3D passive dynamic biped with yaw and roll compensation. Robotica, 2001, 19, 275-284.	1.9	87
10	Speed choice and mental workload of elderly cyclists on e-bikes in simple and complex traffic situations: A field experiment. Accident Analysis and Prevention, 2015, 74, 97-106.	5.7	73
11	Comparison of Three-Dimensional Flexible Beam Elements for Dynamic Analysis: Classical Finite Element Formulation and Absolute Nodal Coordinate Formulation. Journal of Computational and Nonlinear Dynamics, 2010, 5, .	1.2	70
12	Experimental validation of a model of an uncontrolled bicycle. Multibody System Dynamics, 2008, 19, 115-132.	2.7	68
13	A review on bicycle dynamics and rider control. Vehicle System Dynamics, 2013, 51, 1059-1090.	3.7	63
14	Rider motion identification during normal bicycling byÂmeans of principal component analysis. Multibody System Dynamics, 2011, 25, 225-244.	2.7	61
15	Toward a Unified Design Approach for Both Compliant Mechanisms and Rigid-Body Mechanisms: Module Optimization. Journal of Mechanical Design, Transactions of the ASME, 2015, 137, .	2.9	59
16	Benchmark results on the linearized equations of motion of an uncontrolled bicycle. Journal of Mechanical Science and Technology, 2005, 19, 292-304.	1.5	50
17	State-of-the-art and challenges of railway and road vehicle dynamics with multibody dynamics approaches. Multibody System Dynamics, 2020, 49, 1-32.	2.7	47
18	Lateral dynamics of a bicycle with a passive rider model: stability and controllability. Vehicle System Dynamics, 2012, 50, 1209-1224.	3.7	44

#	Article	IF	Citations
19	A review on bicycle and motorcycle rider control with a perspective on handling qualities. Vehicle System Dynamics, 2013, 51, 1722-1764.	3.7	41
20	Dynamics of Flexible Multibody Systems with Non-Holonomic Constraints: A Finite Element Approach. Multibody System Dynamics, 2003, 10, 107-123.	2.7	39
21	Comparison of Three-Dimensional Flexible Beam Elements for Dynamic Analysis: Finite Element Method and Absolute Nodal Coordinate Formulation., 2005,, 1341.		38
22	A study of moderately thick quadrilateral plate elements based on the absolute nodal coordinate formulation. Multibody System Dynamics, 2014, 31, 309-338.	2.7	36
23	Riding performance on a conventional bicycle and a pedelec in low speed exercises: Objective and subjective evaluation of middle-aged and older persons. Transportation Research Part F: Traffic Psychology and Behaviour, 2016, 42, 28-43.	3.7	31
24	Small Vibrations Superimposed on a Prescribed Rigid Body Motion. Multibody System Dynamics, 2002, 8, 29-50.	2.7	30
25	Power in sports: A literature review on the application, assumptions, and terminology of mechanical power in sport research. Journal of Biomechanics, 2018, 79, 1-14.	2.1	22
26	Statical balancing of a robot mechanism with the aid of a genetic algorithm. Mechanism and Machine Theory, 1998, 33, 163-174.	4.5	21
27	Review of Joost Kalker's Wheel-Rail Contact Theories and Their Implementation in Multibody Codes. , 2009, , .		15
28	Wireless instrumented klapskates for long-track speed skating. Sports Engineering, 2016, 19, 273-281.	1.1	15
29	Experimental estimation of energy absorption during heel strike in human barefoot walking. PLoS ONE, 2018, 13, e0197428.	2.5	14
30	Modelling cyclists' comfort zones from obstacle avoidance manoeuvres. Accident Analysis and Prevention, 2020, 144, 105609.	5.7	14
31	Dynamics of Flexible Multibody Systems having Rolling Contact: Application of the Wheel Element to the Dynamics of Road Vehicles. Vehicle System Dynamics, 1999, 33, 338-349.	3.7	13
32	Comparison of Three-Dimensional Flexible Thin Plate Elements for Multibody Dynamic Analysis: Finite Element Formulation and Absolute Nodal Coordinate Formulation., 2007,,.		13
33	Some Observations on Human Control of a Bicycle. , 2009, , .		13
34	Statistics of bicycle rider motion. Procedia Engineering, 2010, 2, 2937-2942.	1.2	13
35	SPACAR: A software subroutine package for simulation of the behavior of biomechanical systems. Journal of Biomechanics, 1992, 25, 1219-1226.	2.1	10
36	A Method for Estimating Physical Properties of a Combined Bicycle and Rider., 2009,,.		10

#	Article	IF	Citations
37	Rider control identification in bicycling using lateral force perturbation tests. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2013, 227, 390-406.	0.8	10
38	Getting in shape: Reconstructing three-dimensional long-track speed skating kinematics by comparing several body pose reconstruction techniques. Journal of Biomechanics, 2018, 69, 103-112.	2.1	9
39	The individual time trial as an optimal control problem. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 2017, 231, 200-206.	0.7	8
40	Editorial for Special Issue – Improving cycling safety through scientific research. Traffic Injury Prevention, 2019, 20, 1-2.	1.4	8
41	Design and hardware selection for a bicycle simulator. Mechanical Sciences, 2019, 10, 1-10.	1.0	8
42	Studying the role of vision in cycling: Critique on restricting research to fixation behaviour. Accident Analysis and Prevention, 2013, 59, 466-468.	5.7	7
43	Design and verification of a simple 3D dynamic model of speed skating which mimics observed forces and motions. Journal of Biomechanics, 2017, 64, 93-102.	2.1	7
44	Roll angle estimator based on angular rate measurements for bicycles. Vehicle System Dynamics, 2019, 57, 1705-1719.	3.7	7
45	A Review on Handling Aspects in Bicycle and Motorcycle Control. , 2011, , .		4
46	Getting the Angles Straight in Speed Skating: A Validation Study on an IMU Filter Design to Measure the Lean Angle of the Skate on the Straights. Procedia Engineering, 2016, 147, 590-595.	1.2	4
47	A simple mechanical model for simulating cross-country skiing, skating technique. Sports Engineering, 2016, 19, 91-104.	1.1	4
48	Some Effects of Crosswind on the Lateral Dynamics of a Bicycle. Proceedings (mdpi), 2018, 2, .	0.2	4
49	Experimental Validation of the Lateral Dynamics of a Bicycle on a Treadmill. , 2009, , .		3
50	On the Design of a Recumbent Bicycle With a Perspective on Handling Qualities., 2012,,.		3
51	Rider Optimal Control Identification in Bicycling. , 2012, , .		3
52	The dynamic response of the bicycle rider's body to vertical, fore-and-aft, and lateral perturbations. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2020, 234, 1944-1957.	1.9	3
53	Editorial: Cycling Safety. Journal of Transportation Safety and Security, 2020, 12, 1-2.	1.6	3
54	The use of computers in the design of discrete component systems. Computer Methods in Applied Mechanics and Engineering, 1993, 103, 231-246.	6.6	2

#	Article	IF	CITATIONS
55	A Variational Approach to Determine the Optimal Power Distribution for Cycling in a Time Trial. Procedia Engineering, 2016, 147, 907-911.	1.2	2
56	Cycling safety. Journal of Safety Research, 2018, 67, 125.	3.6	2
57	Rider control identification in cycling taking into account steering torque feedback and sensory delays. Vehicle System Dynamics, 0, , 1-25.	3.7	2
58	Bicycle and Motorcycle Dynamics. Vehicle System Dynamics, 2012, 50, 1191-1191.	3.7	1
59	Measuring and Comparing Descend in Elite Race Cycling with a Perspective on Real-Time Feedback for Improving Individual Performance. Proceedings (mdpi), 2018, 2, 262.	0.2	1
60	A Simple Multibody Dynamic Model of Cross-Country Ski-Skating. , 2013, , .		1
61	58786 Controllability of a bicycle(Vehicle Dynamics & Control including Tire Dynamics). The Proceedings of the Asian Conference on Multibody Dynamics, 2010, 2010.5, _58786-158786-7	0.0	O
62	Balance and Control of a Rear-wheel Steered Speed-record Recumbent Bicycle. Procedia Engineering, 2014, 72, 459-464.	1.2	0
63	A Simple Mechanical Model for Simulating Cross-Country Skiing Propulsive Force. , 2015, , .		0
64	On the Influence of Contact Geometry on Grasp Stability. , 2008, , .		0