Veronika von Messling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4297910/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Overcoming the Barrier of the Respiratory Epithelium during Canine Distemper Virus Infection. MBio, 2022, 13, e0304321.	1.8	6
2	The rapid progress in COVID vaccine development and implementation. Npj Vaccines, 2022, 7, 20.	2.9	15
3	Systemic inflammation, innate immunity and pathogenesis after Zika virus infection in cynomolgus macaques are modulated by strain-specificity within the Asian lineage. Emerging Microbes and Infections, 2021, 10, 1457-1470.	3.0	4
4	Small-molecule polymerase inhibitor protects non-human primates from measles and reduces shedding. Nature Communications, 2021, 12, 5233.	5.8	6
5	Adjuvant formulated virus-like particles expressing native-like forms of the Lassa virus envelope surface glycoprotein are immunogenic and induce antibodies with broadly neutralizing activity. Npj Vaccines, 2020, 5, 71.	2.9	21
6	Avian Influenza A Virus Infects Swine Airway Epithelial Cells without Prior Adaptation. Viruses, 2020, 12, 589.	1.5	12
7	Utilising animal models to evaluate oseltamivir efficacyÂagainst influenza A and B viruses with reduced in vitroAsusceptibility. PLoS Pathogens, 2020, 16, e1008592.	2.1	6
8	Adenoâ€associated virusâ€vectored influenza vaccine elicits neutralizing and Fcγ receptorâ€activating antibodies. EMBO Molecular Medicine, 2020, 12, e10938.	3.3	24
9	Identification and in vivo Efficacy Assessment of Approved Orally Bioavailable Human Host Protein-Targeting Drugs With Broad Anti-influenza A Activity. Frontiers in Immunology, 2019, 10, 1097.	2.2	21
10	Incomplete genetic reconstitution of B cell pools contributes to prolonged immunosuppression after measles. Science Immunology, 2019, 4, .	5.6	98
11	Comparative Loss-of-Function Screens Reveal ABCE1 as an Essential Cellular Host Factor for Efficient Translation of <i>Paramyxoviridae</i> and <i>Pneumoviridae</i> . MBio, 2019, 10, .	1.8	24
12	Adjuvanted influenza vaccine dynamics. Scientific Reports, 2019, 9, 73.	1.6	6
13	Zika virus infection elicits auto-antibodies to C1q. Scientific Reports, 2018, 8, 1882.	1.6	21
14	The Unstructured Paramyxovirus Nucleocapsid Protein Tail Domain Modulates Viral Pathogenesis through Regulation of Transcriptase Activity. Journal of Virology, 2018, 92, .	1.5	23
15	Generation of therapeutic antisera for emerging viral infections. Npj Vaccines, 2018, 3, 42.	2.9	10
16	Canine Distemper Virus Spread and Transmission to Naive Ferrets: Selective Pressure on Signaling Lymphocyte Activation Molecule-Dependent Entry. Journal of Virology, 2018, 92, .	1.5	27
17	Morbillivirus Pathogenesis and Virus–Host Interactions. Advances in Virus Research, 2018, 100, 75-98.	0.9	19
18	Neuraminidase-Inhibiting Antibody Titers Correlate with Protection from Heterologous Influenza Virus Strains of the Same Neuraminidase Subtype. Journal of Virology, 2018, 92, .	1.5	27

VERONIKA VON MESSLING

#	Article	IF	CITATIONS
19	Inactivated Recombinant Rabies Viruses Displaying Canine Distemper Virus Glycoproteins Induce Protective Immunity against Both Pathogens. Journal of Virology, 2017, 91, .	1.5	25
20	Nectin-4 Interactions Govern Measles Virus Virulence in a New Model of Pathogenesis, the Squirrel Monkey (Saimiri sciureus). Journal of Virology, 2017, 91, .	1.5	25
21	Cross-neutralisation of viruses of the tick-borne encephalitis complex following tick-borne encephalitis vaccination and/or infection. Npj Vaccines, 2017, 2, 5.	2.9	36
22	Morbillivirus Experimental Animal Models: Measles Virus Pathogenesis Insights from Canine Distemper Virus. Viruses, 2016, 8, 274.	1.5	34
23	Squalene-containing licensed adjuvants enhance strain-specific antibody responses against the influenza hemagglutinin and induce subtype-specific antibodies against the neuraminidase. Vaccine, 2016, 34, 5329-5335.	1.7	5
24	Nipah Virus Matrix Protein Influences Fusogenicity and Is Essential for Particle Infectivity and Stability. Journal of Virology, 2016, 90, 2514-2522.	1.5	34
25	Morbillivirus and henipavirus attachment protein cytoplasmic domains differently affect protein expression, fusion support and particle assembly. Journal of General Virology, 2016, 97, 1066-1076.	1.3	11
26	Novel Furin Inhibitors with Potent Antiâ€infectious Activity. ChemMedChem, 2015, 10, 1218-1231.	1.6	64
27	High definition viral vaccine strain identity and stability testing using full-genome population data – The next generation of vaccine quality control. Vaccine, 2015, 33, 5829-5837.	1.7	32
28	An Orally Available, Small-Molecule Polymerase Inhibitor Shows Efficacy Against a Lethal Morbillivirus Infection in a Large Animal Model. Science Translational Medicine, 2014, 6, 232ra52.	5.8	52
29	Morbillivirus Control of the Interferon Response: Relevance of STAT2 and mda5 but Not STAT1 for Canine Distemper Virus Virulence in Ferrets. Journal of Virology, 2014, 88, 2941-2950.	1.5	34
30	Nectin-4-Dependent Measles Virus Spread to the Cynomolgus Monkey Tracheal Epithelium: Role of Infected Immune Cells Infiltrating the Lamina Propria. Journal of Virology, 2013, 87, 2526-2534.	1.5	50
31	Canine Distemper Virus Epithelial Cell Infection Is Required for Clinical Disease but Not for Immunosuppression. Journal of Virology, 2012, 86, 3658-3666.	1.5	59
32	Virulence differences of closely related pandemic 2009 H1N1 isolates correlate with increased inflammatory responses in ferrets. Virology, 2012, 422, 125-131.	1.1	38
33	L'étude de la maladie de Carré chez ses hôtes naturelsÂ: un modèle de pathogenèse morbillivirale. Virologie, 2012, 16, 158-167.	0.1	Ο
34	Adherens junction protein nectin-4 is the epithelial receptor for measles virus. Nature, 2011, 480, 530-533.	13.7	504
35	Canine Distemper Viruses Expressing a Hemagglutinin without N-Glycans Lose Virulence but Retain Immunosuppression. Journal of Virology, 2010, 84, 2753-2761.	1.5	49
36	Canine Distemper Virus Selectively Inhibits Apoptosis Progression in Infected Immune Cells. Journal of Virology, 2009, 83, 6279-6287.	1.5	19

VERONIKA VON MESSLING

#	Article	IF	CITATIONS
37	Region between the Canine Distemper Virus M and F Genes Modulates Virulence by Controlling Fusion Protein Expression. Journal of Virology, 2008, 82, 10510-10518.	1.5	42
38	Canine Distemper Virus Infection Requires Cholesterol in the Viral Envelope. Journal of Virology, 2007, 81, 4158-4165.	1.5	41
39	Tyrosine 110 in the measles virus phosphoprotein is required to block STAT1 phosphorylation. Virology, 2007, 360, 72-83.	1.1	157
40	Receptor (SLAM [CD150]) Recognition and the V Protein Sustain Swift Lymphocyte-Based Invasion of Mucosal Tissue and Lymphatic Organs by a Morbillivirus. Journal of Virology, 2006, 80, 6084-6092.	1.5	136
41	In vitro Canine Distemper Virus Infection of Canine Lymphoid Cells: A Prelude to Oncolytic Therapy for Lymphoma. Clinical Cancer Research, 2005, 11, 1579-1587.	3.2	80
42	Nearby Clusters of Hemagglutinin Residues Sustain SLAM-Dependent Canine Distemper Virus Entry in Peripheral Blood Mononuclear Cells. Journal of Virology, 2005, 79, 5857-5862.	1.5	65
43	Canine Distemper Virus and Measles Virus Fusion Glycoprotein Trimers: Partial Membrane-Proximal Ectodomain Cleavage Enhances Function. Journal of Virology, 2004, 78, 7894-7903.	1.5	24
44	Tropism illuminated: Lymphocyte-based pathways blazed by lethal morbillivirus through the host immune system. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14216-14221.	3.3	176
45	A Ferret Model of Canine Distemper Virus Virulence and Immunosuppression. Journal of Virology, 2003, 77, 12579-12591.	1.5	176
46	N-Linked Glycans with Similar Location in the Fusion Protein Head Modulate Paramyxovirus Fusion. Journal of Virology, 2003, 77, 10202-10212.	1.5	36
47	Amino-Terminal Precursor Sequence Modulates Canine Distemper Virus Fusion Protein Function. Journal of Virology, 2002, 76, 4172-4180.	1.5	41
48	The Hemagglutinin of Canine Distemper Virus Determines Tropism and Cytopathogenicity. Journal of Virology, 2001, 75, 6418-6427.	1.5	163
49	Rapid and Sensitive Detection of Immunoglobulin M (IgM) and IgG Antibodies against Canine Distemper Virus by a New Recombinant Nucleocapsid Protein-Based Enzyme-Linked Immunosorbent Assay. Journal of Clinical Microbiology, 1999, 37, 1049-1056.	1.8	43