
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4297885/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TPE based aggregation induced emission fluorescent sensors for viscosity of liquid and mechanical properties of hydrogel. Chinese Chemical Letters, 2022, 33, 252-256.	9.0	16
2	Development of Small‧cale Monitoring and Modeling Strategies for Safe Lithiumâ€Ion Batteries. Batteries and Supercaps, 2022, 5, .	4.7	8
3	Powerful qua-functional electrolyte additive for lithium metal batteries. Green Energy and Environment, 2022, 7, 361-364.	8.7	5
4	Toxicity assessments and transcriptional effects of monofunctionalized Pt(II) complex under dark and light irradiation condition in Caenorhabditis elegans. Journal of Inorganic Biochemistry, 2022, 230, 111720.	3.5	2
5	Construction of a 2D Layered Phosphorusâ€doped Graphitic Carbon Nitride/BiOBr Heterojunction for Highly Efficient Photocatalytic Disinfection. Chemistry - an Asian Journal, 2022, 17, .	3.3	8
6	Graphitic Carbon Nitrideâ€Based Photocatalysts for Biological Applications. Advanced Sustainable Systems, 2022, 6, .	5.3	7
7	Energetic Aqueous Batteries. Advanced Energy Materials, 2022, 12, .	19.5	48
8	Synthesis of functionalized nanoporous biocarbons with high surface area for CO ₂ capture and supercapacitor applications. Green Chemistry, 2021, 23, 5571-5583.	9.0	62
9	The 2021 battery technology roadmap. Journal Physics D: Applied Physics, 2021, 54, 183001.	2.8	158
10	Nitrogen Doped Carbon Coated Bi Microspheres as Highâ€performance Anode for Half and Full Sodium Ion Batteries. Chemistry - an Asian Journal, 2021, 16, 2314-2320.	3.3	19
11	Advances in Lithium–Sulfur Batteries: From Academic Research to Commercial Viability. Advanced Materials, 2021, 33, e2003666.	21.0	357
12	Highly Efficient Adsorption of Bilirubin by Ti ₃ C ₂ T _x MXene. Chemistry - an Asian Journal, 2021, 16, 1949-1955.	3.3	19
13	A novel conjugated heterotriangulene polymer for high performance organic lithium-ion battery. Dyes and Pigments, 2021, 191, 109352.	3.7	1
14	Pillar[5]areneâ€based "Threeâ€components―Supramolecular Assembly and the Performance of Nitrobenzeneâ€based Explosive Fluorescence Sensing. ChemistrySelect, 2021, 6, 9363-9367.	1.5	4
15	Bismuth Nanoparticles Anchored on Ti ₃ C ₂ T _x MXene Nanosheets for Highâ€Performance Sodiumâ€ion Batteries. Chemistry - an Asian Journal, 2021, 16, 3774-3780.	3.3	17
16	A multifunctional polyimide nanofiber separator with a self-closing polyamide–polyvinyl alcohol top layer with a Turing structure for high-performance lithium–sulfur batteries. Materials Advances, 2020, 1, 3449-3459.	5.4	8
17	Accelerating Redox Kinetics of Lithium-Sulfur Batteries. Trends in Chemistry, 2020, 2, 1020-1033.	8.5	46
18	Self-crosslinkable polyaniline with coordinated stabilized CoOOH nanosheets as a high-efficiency electrocatalyst for oxygen evolution reaction. Applied Surface Science, 2020, 529, 147173.	6.1	25

#	Article	IF	CITATIONS
19	Graphiticâ€Based Solidâ€State Supercapacitors: Enabling Redox Reaction by In Situ Electrochemical Treatment. Batteries and Supercaps, 2020, 3, 569-569.	4.7	0
20	Solid Electrolytes: A Garnetâ€Type Solidâ€Electrolyteâ€Based Molten Lithiumâ^'Molybdenumâ^'Iron(II) Chloride Battery with Advanced Reaction Mechanism (Adv. Mater. 32/2020). Advanced Materials, 2020, 32, 2070242.	21.0	1
21	Atomically dispersed Ni in cadmium-zinc sulfide quantum dots for high-performance visible-light photocatalytic hydrogen production. Science Advances, 2020, 6, eaaz8447.	10.3	83
22	Polyaniline engineering defect-induced nitrogen doped carbon-supported Co3O4 hybrid composite as a high-efficiency electrocatalyst for oxygen evolution reaction. Applied Surface Science, 2020, 526, 146626.	6.1	36
23	A Garnetâ€Type Solidâ€Electrolyteâ€Based Molten Lithiumâ^'Molybdenumâ^'Iron(II) Chloride Battery with Advanced Reaction Mechanism. Advanced Materials, 2020, 32, e2000960.	21.0	14
24	Application of Photocatalytic Materials in Sensors. Advanced Materials Technologies, 2020, 5, 1900993.	5.8	32
25	A functional hyperbranched binder enabling ultra-stable sulfur cathode for high-performance lithium-sulfur battery. Journal of Energy Chemistry, 2020, 50, 63-72.	12.9	31
26	Biomimetic 3D Fe/CeO2 decorated N-doped carbon nanotubes architectures for high-performance lithium-sulfur batteries. Chemical Engineering Journal, 2020, 401, 126079.	12.7	51
27	A robust flame retardant fluorinated polyimide nanofiber separator for high-temperature lithium–sulfur batteries. Journal of Materials Chemistry A, 2020, 8, 14788-14798.	10.3	40
28	Graphiticâ€Based Solid‣tate Supercapacitors: Enabling Redox Reaction by In Situ Electrochemical Treatment. Batteries and Supercaps, 2020, 3, 587-595.	4.7	4
29	Recent Advances in Rechargeable Magnesiumâ€Based Batteries for Highâ€Efficiency Energy Storage. Advanced Energy Materials, 2020, 10, 1903591.	19.5	132
30	Controllable design of nanoworm-like nickel sulfides for efficient electrochemical water splitting in alkaline media. Materials Today Energy, 2020, 18, 100573.	4.7	25
31	Propelling the polysulfide phase transformation of lithium–sulfur battery by VO2-rGO. Journal of Alloys and Compounds, 2019, 804, 549-553.	5.5	15
32	Photoelectrochemical determination of malathion by using CuO modified with a metal-organic framework of type Cu-BTC. Mikrochimica Acta, 2019, 186, 481.	5.0	25
33	Facile synthesis of <i>Camellia oleifera</i> shell-derived hard carbon as an anode material for lithium-ion batteries. RSC Advances, 2019, 9, 20424-20431.	3.6	31
34	A Hollowâ€Shell Structured V ₂ O ₅ Electrodeâ€Based Symmetric Full Liâ€Ion Battery with Highest Capacity. Advanced Energy Materials, 2019, 9, 1900909.	19.5	51
35	WO ₃ nanolayer coated 3D-graphene/sulfur composites for high performance lithium/sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 4596-4603.	10.3	47
36	Strong charge polarization effect enabled by surface oxidized titanium nitride for lithium-sulfur batteries. Communications Chemistry, 2019, 2, .	4.5	29

#	Article	IF	CITATIONS
37	In-situ exfoliation of porous carbon nitride nanosheets for enhanced hydrogen evolution. Nano Energy, 2019, 59, 598-609.	16.0	112
38	Co–Fe Mixed Metal Phosphide Nanocubes with Highly Interconnected-Pore Architecture as an Efficient Polysulfide Mediator for Lithium–Sulfur Batteries. ACS Nano, 2019, 13, 4731-4741.	14.6	212
39	The latest advances in the critical factors (positive electrode, electrolytes, separators) for sodium-sulfur battery. Journal of Alloys and Compounds, 2019, 792, 797-817.	5.5	63
40	Hollow CeO2 spheres conformally coated with graphitic carbon for high-performance supercapacitor electrodes. Applied Surface Science, 2019, 463, 244-252.	6.1	63
41	Hierarchical sodium-rich Prussian blue hollow nanospheres as high-performance cathode for sodium-ion batteries. Nano Research, 2018, 11, 3979-3990.	10.4	90
42	Nitrogen doped yolk-shell carbon spheres as cathode host for lithium-sulfur battery. Journal of Alloys and Compounds, 2018, 747, 283-292.	5.5	23
43	Toward High Performance Lithium–Sulfur Batteries Based on Li ₂ S Cathodes and Beyond: Status, Challenges, and Perspectives. Advanced Functional Materials, 2018, 28, 1800154.	14.9	107
44	Iron-Doped NiCoP Porous Nanosheet Arrays as a Highly Efficient Electrocatalyst for Oxygen Evolution Reaction. ACS Applied Energy Materials, 2018, 1, 571-579.	5.1	99
45	MOF-derived porous N–Co ₃ O ₄ @N–C nanododecahedra wrapped with reduced graphene oxide as a high capacity cathode for lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 2797-2807.	10.3	266
46	Updated Metal Compounds (MOFs, S, OH, N, C) Used as Cathode Materials for Lithium–Sulfur Batteries. Advanced Energy Materials, 2018, 8, 1702607.	19.5	202
47	Pomegranateâ€6tructured Silica/Sulfur Composite Cathodes for Highâ€Performance Lithium–Sulfur Batteries. Chemistry - an Asian Journal, 2018, 13, 568-576.	3.3	5
48	Self-standing sulfur cathodes enabled by 3D hierarchically porous titanium monoxide-graphene composite film for high-performance lithium-sulfur batteries. Nano Energy, 2018, 47, 331-339.	16.0	106
49	On-grid batteries for large-scale energy storage: Challenges and opportunities for policy and technology. MRS Energy & Sustainability, 2018, 5, 1.	3.0	33
50	Lithiumâ€5ulfur Batteries: Toward High Performance Lithium–Sulfur Batteries Based on Li ₂ S Cathodes and Beyond: Status, Challenges, and Perspectives (Adv. Funct. Mater.) Tj ETQq0 0 0	rg B 4.∕Øve	rlo cla 10 Tf 50
51	Controlling the adsorption behavior of hydrogen at the interface of polycrystalline CVD graphene. International Journal of Hydrogen Energy, 2018, 43, 18735-18744.	7.1	7
52	Electrode Materials for Sodium-Ion Batteries: Considerations on Crystal Structures and Sodium Storage Mechanisms. Electrochemical Energy Reviews, 2018, 1, 200-237.	25.5	213
53	Promoting lithium polysulfide/sulfide redox kinetics by the catalyzing of zinc sulfide for high performance lithium-sulfur battery. Nano Energy, 2018, 51, 73-82.	16.0	350
54	Recent developments of aprotic lithium-oxygen batteries: functional materials determine the electrochemical performance. Science Bulletin, 2017, 62, 442-452.	9.0	54

#	Article	IF	CITATIONS
55	Na ₂ Ti ₃ O ₇ @Nâ€Doped Carbon Hollow Spheres for Sodiumâ€lon Batteries with Excellent Rate Performance. Advanced Materials, 2017, 29, 1700989.	21.0	275
56	Lithiumâ€Sulfur Batteries: Fabrication of Nâ€doped Graphene–Carbon Nanotube Hybrids from Prussian Blue for Lithium–Sulfur Batteries (Adv. Energy Mater. 8/2017). Advanced Energy Materials, 2017, 7, .	19.5	1
57	Prussian Blue Nanocubes with an Open Framework Structure Coated with PEDOT as Highâ€Capacity Cathodes for Lithium–Sulfur Batteries. Advanced Materials, 2017, 29, 1700587.	21.0	170
58	Fabrication of Nâ€doped Graphene–Carbon Nanotube Hybrids from Prussian Blue for Lithium–Sulfur Batteries. Advanced Energy Materials, 2017, 7, 1602014.	19.5	304
59	Confined Sulfur in 3 D MXene/Reduced Graphene Oxide Hybrid Nanosheets for Lithium–Sulfur Battery. Chemistry - A European Journal, 2017, 23, 12613-12619.	3.3	167
60	Co ₃ O ₄ -Carbon Cloth free standing cathode for lithium sulfur battery. IOP Conference Series: Materials Science and Engineering, 2017, 222, 012013.	0.6	9
61	Highâ€Capacity Aqueous Potassiumâ€Ion Batteries for Largeâ€5cale Energy Storage. Advanced Materials, 2017, 29, 1604007.	21.0	494
62	3D Freeâ€&tanding NiCo ₂ O ₄ @graphene Foam for Highâ€Performance Supercapacitors. Energy Technology, 2016, 4, 737-743.	3.8	18
63	Improved Electrochemical Performance of Naâ€ion Batteries in Etherâ€Based Electrolytes: A Case Study of ZnS Nanospheres. Advanced Energy Materials, 2016, 6, 1501785.	19.5	229
64	Ruthenium nanocrystal decorated vertical graphene nanosheets@Ni foam as highly efficient cathode catalysts for lithium-oxygen batteries. NPG Asia Materials, 2016, 8, e286-e286.	7.9	52
65	A nitrogen–sulfur co-doped porous graphene matrix as a sulfur immobilizer for high performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2016, 4, 17381-17393.	10.3	133
66	Immobilizing Polysulfides with MXene-Functionalized Separators for Stable Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2016, 8, 29427-29433.	8.0	234
67	3D Metal Carbide@Mesoporous Carbon Hybrid Architecture as a New Polysulfide Reservoir for Lithiumâ€5ulfur Batteries. Advanced Functional Materials, 2016, 26, 8746-8756.	14.9	210
68	Rose flower-like NiCo2O4 with hierarchically porous structures for highly reversible lithium storage. Journal of Alloys and Compounds, 2016, 684, 691-698.	5.5	45
69	3D hybrid–porous carbon derived from carbonization of metal organic frameworks for high performance supercapacitors. Journal of Power Sources, 2016, 325, 286-291.	7.8	88
70	Graphene-Co3O4 nanocomposite as electrocatalyst with high performance for oxygen evolution reaction. Scientific Reports, 2015, 5, 7629.	3.3	234
71	Bismuth: A new anode for the Na-ion battery. Nano Energy, 2015, 12, 88-95.	16.0	251
72	Single-Step, Plasma-Enabled Reforming of Natural Precursors into Vertical Graphene Electrodes with High Areal Capacitance. ACS Sustainable Chemistry and Engineering, 2015, 3, 544-551.	6.7	34

#	Article	IF	CITATIONS
73	Porous graphene wrapped CoO nanoparticles for highly efficient oxygen evolution. Journal of Materials Chemistry A, 2015, 3, 5402-5408.	10.3	79
74	A comparative investigation on the effects of nitrogen-doping into graphene on enhancing the electrochemical performance of SnO ₂ /graphene for sodium-ion batteries. Nanoscale, 2015, 7, 3164-3172.	5.6	130
75	Gold nanocrystals with variable index facets as highly effective cathode catalysts for lithium–oxygen batteries. NPG Asia Materials, 2015, 7, e155-e155.	7.9	66
76	MoS ₂ /Graphene Composite Anodes with Enhanced Performance for Sodiumâ€ion Batteries: The Role of the Twoâ€Dimensional Heterointerface. Advanced Functional Materials, 2015, 25, 1393-1403.	14.9	657
77	Sn@CNT nanopillars grown perpendicularly on carbon paper: A novel free-standing anode for sodium ion batteries. Nano Energy, 2015, 13, 208-217.	16.0	185
78	Microwave synthesis of α-Fe2O3 nanoparticles and their lithium storage properties: A comparative study. Journal of Alloys and Compounds, 2015, 648, 732-739.	5.5	38
79	Hierarchical Vanadium Pentoxide Spheres as Highâ€Performance Anode Materials for Sodiumâ€ion Batteries. ChemSusChem, 2015, 8, 2877-2882.	6.8	40
80	Sustainable process for all-carbon electrodes: Horticultural doping of natural-resource-derived nano-carbons for high-performance supercapacitors. Carbon, 2015, 91, 386-394.	10.3	26
81	Antimony-Carbon-Graphene Fibrous Composite as Freestanding Anode Materials for Sodium-ion Batteries. Electrochimica Acta, 2015, 177, 304-309.	5.2	44
82	Anatase TiO ₂ : Better Anode Material Than Amorphous and Rutile Phases of TiO ₂ for Na-Ion Batteries. Chemistry of Materials, 2015, 27, 6022-6029.	6.7	279
83	Scalable Preparation of LiFePO ₄ /C Nanocomposites with sp ² oordinated Carbon Coating as Highâ€Performance Cathode Materials for Lithiumâ€Ion Batteries. ChemElectroChem, 2015, 2, 2096-2103.	3.4	9
84	Hierarchical Ru nanospheres as highly effective cathode catalysts for Li–O2batteries. Journal of Materials Chemistry A, 2015, 3, 18384-18388.	10.3	20
85	Polypyrrole hollow nanospheres: stable cathode materials for sodium-ion batteries. Chemical Communications, 2015, 51, 16092-16095.	4.1	68
86	Ultrathin MoS ₂ Nanosheets as Anode Materials for Sodiumâ€lon Batteries with Superior Performance. Advanced Energy Materials, 2015, 5, 1401205.	19.5	341
87	Mesoporous MnCo ₂ O ₄ with a Flakeâ€Like Structure as Advanced Electrode Materials for Lithiumâ€Ion Batteries and Supercapacitors. Chemistry - A European Journal, 2015, 21, 1526-1532.	3.3	183
88	A Microwave Synthesis of Mesoporous NiCo ₂ O ₄ Nanosheets as Electrode Materials for Lithiumâ€ion Batteries and Supercapacitors. ChemPhysChem, 2015, 16, 169-175.	2.1	122
89	SnS ₂ Nanoplatelet@Graphene Nanocomposites as High apacity Anode Materials for Sodiumâ€ion Batteries. Chemistry - an Asian Journal, 2014, 9, 1611-1617.	3.3	166
90	Synthesis of Singleâ€Crystalline Spinel LiMn ₂ O ₄ Nanorods for Lithiumâ€lon Batteries with High Rate Capability and Long Cycle Life. Chemistry - A European Journal, 2014, 20, 17125-17131.	3.3	32

#	Article	IF	CITATIONS
91	Graphene/MnO2 hybrid nanosheets as high performance electrode materials for supercapacitors. Materials Chemistry and Physics, 2014, 143, 740-746.	4.0	34
92	Microwave hydrothermal synthesis of urchin-like NiO nanospheres as electrode materials for lithium-ion batteries and supercapacitors with enhanced electrochemical performances. Journal of Alloys and Compounds, 2014, 582, 522-527.	5.5	48
93	3D mesoporous hybrid NiCo ₂ O ₄ @graphene nanoarchitectures as electrode materials for supercapacitors with enhanced performances. Journal of Materials Chemistry A, 2014, 2, 8103-8109.	10.3	94
94	Hierarchical orthorhombic V2O5 hollow nanospheres as high performance cathode materials for sodium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 11185.	10.3	153
95	WS2@graphene nanocomposites as anode materials for Na-ion batteries with enhanced electrochemical performances. Chemical Communications, 2014, 50, 4192.	4.1	224
96	Soft-template synthesis of 3D porous graphene foams with tunable architectures for lithium–O ₂ batteries and oil adsorption applications. Journal of Materials Chemistry A, 2014, 2, 7973-7979.	10.3	108
97	Single-walled carbon nanotube-based polymer monoliths for the enantioselective nano-liquid chromatographic separation of racemic pharmaceuticals. Journal of Chromatography A, 2014, 1360, 100-109.	3.7	60
98	Microwave-assisted synthesis of spherical β-Ni(OH) 2 superstructures for electrochemical capacitors with excellent cycling stability. Chemical Physics Letters, 2014, 610-611, 115-120.	2.6	25
99	A simple approach to prepare nickel hydroxide nanosheets for enhanced pseudocapacitive performance. RSC Advances, 2014, 4, 19476-19481.	3.6	28
100	Highly Porous NiCo ₂ O ₄ Nanoflakes and Nanobelts as Anode Materials for Lithium-Ion Batteries with Excellent Rate Capability. ACS Applied Materials & Interfaces, 2014, 6, 14827-14835.	8.0	187
101	Mesocrystal Co3O4 nanoplatelets as high capacity anode materials for Li-ion batteries. Nano Research, 2014, 7, 794-803.	10.4	67
102	Hydrothermal synthesis of FeP4 and Fe2P-loaded Î \pm -Fe2O3 hollow spheres and applications in gas sensors. Sensors and Actuators B: Chemical, 2014, 194, 27-32.	7.8	6
103	Hierarchical Mesoporous SnO Microspheres as High Capacity Anode Materials for Sodiumâ€Ion Batteries. Chemistry - A European Journal, 2014, 20, 3192-3197.	3.3	59
104	Mesoporous hexagonal Co3O4 for high performance lithium ion batteries. Scientific Reports, 2014, 4, 6519.	3.3	84
105	Single Crystalline Co3O4 Nanocrystals Exposed with Different Crystal Planes for Li-O2 Batteries. Scientific Reports, 2014, 4, 5767.	3.3	201
106	CuO single crystal with exposed {001} facets - A highly efficient material for gas sensing and Li-ion battery applications. Scientific Reports, 2014, 4, 5753.	3.3	123
107	Fabrication and enhanced electrochemical performances of MoO3/graphene composite as anode material for lithium-ion batteries. International Journal of Smart Grid and Clean Energy, 2014, , .	0.4	3
108	Single Crystalline Na _{0.7} MnO ₂ Nanoplates as Cathode Materials for Sodiumâ€lon Batteries with Enhanced Performance. Chemistry - A European Journal, 2013, 19, 10884-10889.	3.3	194

#	Article	IF	CITATIONS
109	Octahedral tin dioxide nanocrystals as high capacity anode materials for Na-ion batteries. Physical Chemistry Chemical Physics, 2013, 15, 12543.	2.8	115
110	SnO2@MWCNT nanocomposite as a high capacity anode material for sodium-ion batteries. Electrochemistry Communications, 2013, 29, 8-11.	4.7	232
111	One-dimensional magnetite Fe3O4 nanowires as electrode material for Li-ion batteries with improved electrochemical performance. Journal of Power Sources, 2013, 244, 742-746.	7.8	43
112	High capacity spherical Li[Li0.24Mn0.55Co0.14Ni0.07]O2 cathode material for lithium ion batteries. Solid State Ionics, 2013, 233, 12-19.	2.7	20
113	A study of PtxCoy alloy nanoparticles as cathode catalysts for lithium-air batteries with improved catalytic activity. Journal of Power Sources, 2013, 244, 488-493.	7.8	44
114	SnO2@graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance. Chemical Communications, 2013, 49, 3131.	4.1	332
115	ZnO nanocrystals with a high percentage of exposed reactive facets for enhanced gas sensing performance. Sensors and Actuators B: Chemical, 2013, 186, 286-292.	7.8	20
116	Single-Crystalline Bilayered V ₂ O ₅ Nanobelts for High-Capacity Sodium-Ion Batteries. ACS Nano, 2013, 7, 11218-11226.	14.6	326
117	β-MnO2 nanorods with exposed tunnel structures as high-performance cathode materials for sodium-ion batteries. NPG Asia Materials, 2013, 5, e70-e70.	7.9	68
118	The Effect of Carbon Coating on the Electrochemical Performance of Nanosized Li2FeSiO4Cathode Materials. Acta Physica Polonica A, 2013, 123, 279-282.	0.5	5
119	Hydrothermal synthesis of α-MnO2 and β-MnO2 nanorods as high capacity cathode materials for sodium ion batteries. Journal of Materials Chemistry A, 2013, 1, 4845.	10.3	215
120	Hydrothermal Synthesis of Nickel Oxide Nanosheets for Lithiumâ€lon Batteries and Supercapacitors with Excellent Performance. Chemistry - an Asian Journal, 2013, 8, 2828-2832.	3.3	33
121	Synthesis of Highly Ordered Mesoporous Co3O4 for Gas Sensing. Journal of Nanoscience and Nanotechnology, 2013, 13, 3354-3359.	0.9	3
122	Consideration of Critical Axial Properties of Pristine and Defected Carbon Nanotubes Under Compression. Journal of Nanoscience and Nanotechnology, 2012, 12, 5025-5029.	0.9	0
123	Synthesis of tuneable porous hematites (α-Fe2O3) for gas sensing and lithium storage in lithium ion batteries. Microporous and Mesoporous Materials, 2012, 149, 36-45.	4.4	44
124	Solvothermal synthesis of CoS2–graphene nanocomposite material for high-performance supercapacitors. Journal of Materials Chemistry, 2012, 22, 15750.	6.7	205
125	Preparation and Enhanced Electrochemical Performance of MnO ₂ Nanosheets for Supercapacitors. Journal of the Chinese Chemical Society, 2012, 59, 1275-1279.	1.4	9
126	Graphene-supported SnO2 nanoparticles prepared by a solvothermal approach for an enhanced electrochemical performance in lithium-ion batteries. Nanoscale Research Letters, 2012, 7, 215.	5.7	38

#	Article	IF	CITATIONS
127	Mesoporous NiO crystals with dominantly exposed {110} reactive facets for ultrafast lithium storage. Scientific Reports, 2012, 2, 924.	3.3	160
128	Hollow CoFe ₂ O ₄ nanospheres as a high capacity anode material for lithium ion batteries. Nanotechnology, 2012, 23, 055402.	2.6	140
129	Glycothermal synthesis of assembled vanadium oxide nanostructures for gas sensing. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	32
130	An ordered mesoporous WS2 anode material with superior electrochemical performance for lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 17437.	6.7	186
131	Highly Ordered Mesoporous MoS ₂ with Expanded Spacing of the (002) Crystal Plane for Ultrafast Lithium Ion Storage. Advanced Energy Materials, 2012, 2, 970-975.	19.5	455
132	Superior Electrochemical Performance of Sulfur/Graphene Nanocomposite Material for High apacity Lithium–Sulfur Batteries. Chemistry - an Asian Journal, 2012, 7, 1637-1643.	3.3	58
133	Mesoporous Nickel Oxide Nanowires: Hydrothermal Synthesis, Characterisation and Applications for Lithiumâ€lon Batteries and Supercapacitors with Superior Performance. Chemistry - A European Journal, 2012, 18, 8224-8229.	3.3	133
134	Graphene nanosheets as cathode catalysts for lithium-air batteries with an enhanced electrochemical performance. Carbon, 2012, 50, 727-733.	10.3	238
135	Enhance electrochemical performance of lithium sulfur battery through a solution-based processing technique. Journal of Power Sources, 2012, 202, 389-393.	7.8	57
136	Polyhedral Magnetite Nanocrystals with Multiple Facets: Facile Synthesis, Structural Modelling, Magnetic Properties and Application for High Capacity Lithium Storage. Chemistry - A European Journal, 2012, 18, 488-497.	3.3	24
137	<i>Ab initio</i> calculations on Li-ion migration in Li2FeSiO4 cathode material with a P21 symmetry structure. Applied Physics Letters, 2011, 99, .	3.3	29

138 Analysis and study on Chinese ancient wooden wheel. , 2009, , .

2