German Perez-Sanchez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4297777/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sticky-MARTINI as a reactive coarse-grained model for molecular dynamics simulations of silica polymerization. Npj Computational Materials, 2022, 8, .	3.5	10
2	Molecular simulation of methane hydrate growth confined into a silica pore. Journal of Molecular Liquids, 2022, 362, 119698.	2.3	4
3	Solvent extraction in extended hydrogen bonded fluids – separation of Pt(<scp>iv</scp>) from Pd(<scp>ii</scp>) using TOPO-based type V DES. Green Chemistry, 2021, 23, 4540-4550.	4.6	16
4	Using coarse-grained molecular dynamics to understand the effect of ionic liquids on the aggregation of Pluronic copolymer solutions. Physical Chemistry Chemical Physics, 2021, 23, 5824-5833.	1.3	17
5	Multifunctionality in an Ion-Exchanged Porous Metal–Organic Framework. Journal of the American Chemical Society, 2021, 143, 1365-1376.	6.6	31
6	Unveiling the phase behavior of C _i E _j non-ionic surfactants in water through coarse-grained molecular dynamics simulations. Soft Matter, 2021, 17, 5183-5196.	1.2	8
7	Unveiling the local structure of 2-mercaptobenzothiazole intercalated in (Zn2Al) layered double hydroxides. Applied Clay Science, 2020, 198, 105842.	2.6	5
8	Unravelling the Interactions between Surface-Active Ionic Liquids and Triblock Copolymers for the Design of Thermal Responsive Systems. Journal of Physical Chemistry B, 2020, 124, 7046-7058.	1.2	12
9	Mesoscale model of the synthesis of periodic mesoporous benzene-silica. Journal of Molecular Liquids, 2020, 316, 113861.	2.3	3
10	Using coarse-grained molecular dynamics to rationalize biomolecule solubilization mechanisms in ionic liquid-based colloidal systems. Physical Chemistry Chemical Physics, 2020, 22, 24771-24783.	1.3	9
11	Non-ionic hydrophobic eutectics – versatile solvents for tailored metal separation and valorisation. Green Chemistry, 2020, 22, 2810-2820.	4.6	67
12	The cation effect on the solubility of glycylglycine and N-acetylglycine in aqueous solution: Experimental and molecular dynamics studies. Journal of Molecular Liquids, 2020, 310, 113044.	2.3	2
13	Improved coarse-grain model to unravel the phase behavior of 1-alkyl-3-methylimidazolium-based ionic liquids through molecular dynamics simulations. Journal of Colloid and Interface Science, 2020, 574, 324-336.	5.0	28
14	Rationalizing the Phase Behavior of Triblock Copolymers through Experiments and Molecular Simulations. Journal of Physical Chemistry C, 2019, 123, 21224-21236.	1.5	33
15	Enhancement of Ethane Selectivity in Ethane–Ethylene Mixtures by Perfluoro Groups in Zr-Based Metal-Organic Frameworks. ACS Applied Materials & Interfaces, 2019, 11, 27410-27421.	4.0	69
16	Mechanisms of phase separation in temperature-responsive acidic aqueous biphasic systems. Physical Chemistry Chemical Physics, 2019, 21, 7462-7473.	1.3	23
17	Mechanism of ionic-liquid-based acidic aqueous biphasic system formation. Physical Chemistry Chemical Physics, 2018, 20, 9838-9846.	1.3	26
18	Modelling the self-assembly of silica-based mesoporous materials. Molecular Simulation, 2018, 44, 435-452	0.9	16

GERMAN PEREZ-SANCHEZ

#	Article	IF	CITATIONS
19	A molecular dynamics framework to explore the structure and dynamics of layered double hydroxides. Applied Clay Science, 2018, 163, 164-177.	2.6	27
20	Molecular Simulations of the Synthesis of Periodic Mesoporous Silica Phases at High Surfactant Concentrations. Journal of Physical Chemistry C, 2017, 121, 4564-4575.	1.5	29
21	Multiscale Model for the Templated Synthesis of Mesoporous Silica: The Essential Role of Silica Oligomers. Chemistry of Materials, 2016, 28, 2715-2727.	3.2	32
22	Evaluation of the GROMOS 56A _{CARBO} Force Field for the Calculation of Structural, Volumetric, and Dynamic Properties of Aqueous Glucose Systems. Journal of Physical Chemistry B, 2015, 119, 15310-15319.	1.2	14
23	CHAPTER 11. Critical Behaviour: Pure Fluids and Mixtures. , 2014, , 326-344.		0
24	Modeling Self-Assembly of Silica/Surfactant Mesostructures in the Templated Synthesis of Nanoporous Solids. Langmuir, 2013, 29, 2387-2396.	1.6	44
25	Highly precise (liquid+liquid) equilibrium and heat capacity measurements near the critical point for [Bmim][BF4]+1H, 1H, 2H, 2H perfluoroctanol. Journal of Chemical Thermodynamics, 2013, 65, 131-137.	1.0	18
26	Fluid-solid equilibrium of carbon dioxide as obtained from computer simulations of several popular potential models: The role of the quadrupole. Journal of Chemical Physics, 2013, 138, 084506.	1.2	21
27	Thermal properties of ionic systems near the liquid-liquid critical point. Journal of Chemical Physics, 2011, 135, 214507.	1.2	19
28	Dielectric constant of fluids and fluid mixtures at criticality. Physical Review E, 2010, 81, 041121.	0.8	21
29	Critical behavior of static properties for nitrobenzene-alkane mixtures. Journal of Chemical Physics, 2010, 132, 214503.	1.2	17
30	Heat capacity anomalies along the critical isotherm in fluid-fluid phase transitions. Journal of Chemical Physics, 2010, 132, 154509.	1.2	5
31	Asymmetric criticality in weakly compressible liquid mixtures. Journal of Chemical Physics, 2010, 132, 154502.	1.2	83
32	Thermodynamic consistency near the liquid-liquid critical point. Journal of Chemical Physics, 2009, 130, 044506.	1.2	14
33	Solution thermodynamics near the liquid–liquid critical point. Fluid Phase Equilibria, 2007, 258, 7-15.	1.4	20