Ahmed S Elwakil

List of Publications by Citations

Source: https://exaly.com/author-pdf/4297753/ahmed-s-elwakil-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 502
 9,111
 47
 73

 papers
 citations
 h-index
 g-index

 568
 10,986
 2.7
 7.09

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
502	Fractional-order circuits and systems: An emerging interdisciplinary research area. <i>IEEE Circuits and Systems Magazine</i> , 2010 , 10, 40-50	3.2	349
501	On the stability of linear systems with fractional-order elements. <i>Chaos, Solitons and Fractals</i> , 2009 , 40, 2317-2328	9.3	225
500	. IEEE Transactions on Circuits and Systems I: Regular Papers, 2008, 55, 2051-2063	3.9	205
499	FIRST-ORDER FILTERS GENERALIZED TO THE FRACTIONAL DOMAIN. <i>Journal of Circuits, Systems and Computers</i> , 2008 , 17, 55-66	0.9	172
498	Construction of classes of circuit-independent chaotic oscillators using passive-only nonlinear devices. <i>IEEE Transactions on Circuits and Systems Part 1: Regular Papers</i> , 2001 , 48, 289-307		168
497	ON THE GENERALIZATION OF SECOND-ORDER FILTERS TO THE FRACTIONAL-ORDER DOMAIN. Journal of Circuits, Systems and Computers, 2009 , 18, 361-386	0.9	167
496	Field programmable analogue array implementation of fractional step filters. <i>IET Circuits, Devices and Systems</i> , 2010 , 4, 514	1.1	135
495	FPGA implementation of two fractional order chaotic systems. <i>AEU - International Journal of Electronics and Communications</i> , 2017 , 78, 162-172	2.8	129
494	Measurement of Supercapacitor Fractional-Order Model Parameters From Voltage-Excited Step Response. <i>IEEE Journal on Emerging and Selected Topics in Circuits and Systems</i> , 2013 , 3, 367-376	5.2	119
493	Reevaluation of Performance of Electric Double-layer Capacitors from Constant-current Charge/Discharge and Cyclic Voltammetry. <i>Scientific Reports</i> , 2016 , 6, 38568	4.9	108
492	Fractional-order models of supercapacitors, batteries and fuel cells: a survey. <i>Materials for Renewable and Sustainable Energy</i> , 2015 , 4, 1	4.7	107
491	Fractional-order Wien-bridge oscillator. <i>Electronics Letters</i> , 2001 , 37, 1110	1.1	104
490	Design equations for fractional-order sinusoidal oscillators: Four practical circuit examples. <i>International Journal of Circuit Theory and Applications</i> , 2008 , 36, 473-492	2	102
489	On the practical realization of higher-order filters with fractional stepping. <i>Signal Processing</i> , 2011 , 91, 484-491	4.4	100
488	Review of fractional-order electrical characterization of supercapacitors. <i>Journal of Power Sources</i> , 2018 , 400, 457-467	8.9	92
487	. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 2002 , 49, 527-530		90
486	Improved implementation of Chua's chaotic oscillator using current feedback op amp. <i>IEEE Transactions on Circuits and Systems Part 1: Regular Papers</i> , 2000 , 47, 76-79		88

485	Optimization of Fractional-Order RLC Filters. Circuits, Systems, and Signal Processing, 2013, 32, 2097-21	18.2	85
484	A Simple Model of Double-Loop Hysteresis Behavior in Memristive Elements. <i>IEEE Transactions on Circuits and Systems II: Express Briefs</i> , 2013 , 60, 487-491	3.5	83
483	Power and energy analysis of fractional-order electrical energy storage devices. <i>Energy</i> , 2016 , 111, 785	-7 /2 3	78
482	High-quality factor asymmetric-slope band-pass filters: a fractional-order capacitor approach. <i>IET Circuits, Devices and Systems</i> , 2012 , 6, 187	1.1	74
481	On The Optimization of Fractional Order Low-Pass Filters. <i>Circuits, Systems, and Signal Processing</i> , 2016 , 35, 2017-2039	2.2	73
480	Fractional Order Sallenkey and KHN Filters: Stability and Poles Allocation. <i>Circuits, Systems, and Signal Processing</i> , 2015 , 34, 1461-1480	2.2	72
479	A Novel Chaotic System without Equilibrium: Dynamics, Synchronization, and Circuit Realization. <i>Complexity</i> , 2017 , 2017, 1-11	1.6	68
478	Biological inspired optimization algorithms for cole-impedance parameters identification. <i>AEU - International Journal of Electronics and Communications</i> , 2017 , 78, 79-89	2.8	67
477	Experimental comparison of integer/fractional-order electrical models of plant. <i>AEU - International Journal of Electronics and Communications</i> , 2017 , 80, 1-9	2.8	65
476	Generalized fractional logistic map encryption system based on FPGA. <i>AEU - International Journal of Electronics and Communications</i> , 2017 , 80, 114-126	2.8	63
475	Generalized double-humped logistic map-based medical image encryption. <i>Journal of Advanced Research</i> , 2018 , 10, 85-98	13	62
474	Symmetric encryption algorithms using chaotic and non-chaotic generators: A review. <i>Journal of Advanced Research</i> , 2016 , 7, 193-208	13	61
473	Fractional order oscillators based on operational transresistance amplifiers. <i>AEU - International Journal of Electronics and Communications</i> , 2015 , 69, 988-1003	2.8	61
472	Emulation of a constant phase element using operational transconductance amplifiers. <i>Analog Integrated Circuits and Signal Processing</i> , 2015 , 85, 413-423	1.2	60
471	Extracting the parameters of the double-dispersion Cole bioimpedance model from magnitude response measurements. <i>Medical and Biological Engineering and Computing</i> , 2014 , 52, 749-58	3.1	60
470	Electronically Tunable Fully Integrated Fractional-Order Resonator. <i>IEEE Transactions on Circuits and Systems II: Express Briefs</i> , 2018 , 65, 166-170	3.5	59
469	On the Mathematical Modeling of Memristor, Memcapacitor, and Meminductor. <i>Studies in Systems, Decision and Control</i> , 2015 ,	0.8	58
468	n-scroll chaos generator using nonlinear transconductor. <i>Electronics Letters</i> , 2002 , 38, 685	1.1	57

467	A novel image encryption system merging fractional-order edge detection and generalized chaotic maps. <i>Signal Processing</i> , 2020 , 167, 107280	4.4	57
466	A low frequency oscillator using a super-capacitor. <i>AEU - International Journal of Electronics and Communications</i> , 2016 , 70, 970-973	2.8	56
465	Approximated Fractional-Order Inverse Chebyshev Lowpass Filters. <i>Circuits, Systems, and Signal Processing</i> , 2016 , 35, 1973-1982	2.2	54
464	Approximated Fractional Order Chebyshev Lowpass Filters. <i>Mathematical Problems in Engineering</i> , 2015 , 2015, 1-7	1.1	54
463	CCII based fractional filters of different orders. Journal of Advanced Research, 2014, 5, 157-64	13	54
462	Three Fractional-Order-Capacitors-Based Oscillators with Controllable Phase and Frequency. Journal of Circuits, Systems and Computers, 2017, 26, 1750160	0.9	52
461	Extracting the Cole-Cole impedance model parameters without direct impedance measurement. <i>Electronics Letters</i> , 2010 , 46, 1367	1.1	52
460	Experimental verification of on-chip CMOS fractional-order capacitor emulators. <i>Electronics Letters</i> , 2016 , 52, 1298-1300	1.1	49
459	Fractional-order electronically controlled generalized filters. <i>International Journal of Circuit Theory and Applications</i> , 2017 , 45, 595-612	2	49
458	On some generalized discrete logistic maps. <i>Journal of Advanced Research</i> , 2013 , 4, 163-71	13	48
457	On a multivibrator that employs a fractional capacitor. <i>Analog Integrated Circuits and Signal Processing</i> , 2010 , 62, 99-103	1.2	48
456	EXPERIMENTAL VERIFICATION OF THE BUTTERFLY ATTRACTOR IN A MODIFIED LORENZ SYSTEM. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2002 , 12, 1627-1632	2	48
455	Modeling and analysis of fractional order DC-DC converter. ISA Transactions, 2018, 82, 184-199	5.5	47
454	Hardware stream cipher with controllable chaos generator for colour image encryption. <i>IET Image Processing</i> , 2014 , 8, 33-43	1.7	47
453	Generalized Hardware Post-processing Technique for Chaos-Based Pseudorandom Number Generators. <i>ETRI Journal</i> , 2013 , 35, 448-458	1.4	45
452	Reconfigurable chaotic pseudo random number generator based on FPGA. <i>AEU - International Journal of Electronics and Communications</i> , 2019 , 98, 174-180	2.8	45
451	Approximation of the Fractional-Order Laplacian \$s^alpha\$ As a Weighted Sum of First-Order High-Pass Filters. <i>IEEE Transactions on Circuits and Systems II: Express Briefs</i> , 2018 , 65, 1114-1118	3.5	43
450	A fractal-based image encryption system. <i>IET Image Processing</i> , 2014 , 8, 742-752	1.7	43

(2016-2007)

449	1-D DIGITALLY-CONTROLLED MULTISCROLL CHAOS GENERATOR. <i>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering</i> , 2007 , 17, 227-242	2	43
448	Fractional-order mutual inductance: analysis and design. <i>International Journal of Circuit Theory and Applications</i> , 2016 , 44, 85-97	2	42
447	Cole impedance extractions from the step-response of a current excited fruit sample. <i>Computers and Electronics in Agriculture</i> , 2013 , 98, 100-108	6.5	42
446	An inductorless CMOS realization of Chuad circuit. <i>Chaos, Solitons and Fractals</i> , 2003 , 18, 149-158	9.3	42
445	Two-port two impedances fractional order oscillators. <i>Microelectronics Journal</i> , 2016 , 55, 40-52	1.8	41
444	Chaotic Flower Pollination and Grey Wolf Algorithms for parameter extraction of bio-impedance models. <i>Applied Soft Computing Journal</i> , 2019 , 75, 750-774	7.5	41
443	A family of Wien-type oscillators modified for chaos. <i>International Journal of Circuit Theory and Applications</i> , 1997 , 25, 561-579	2	40
442	Spectral Capacitance of Series and Parallel Combinations of Supercapacitors. <i>ChemElectroChem</i> , 2016 , 3, 1429-1436	4.3	39
441	Fractional-step Tow-Thomas biquad filters. Nonlinear Theory and Its Applications IEICE, 2012, 3, 357-374	0.6	39
440	A FOUR-WING BUTTERFLY ATTRACTOR FROM A FULLY AUTONOMOUS SYSTEM. <i>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering</i> , 2003 , 13, 3093-3098	2	39
439	Design of CMOS Analog Integrated Fractional-Order Circuits. <i>Springer Briefs in Electrical and Computer Engineering</i> , 2017 ,	0.4	38
438	Fractional Order Oscillator Design Based on Two-Port Network. <i>Circuits, Systems, and Signal Processing</i> , 2016 , 35, 3086-3112	2.2	38
437	AN EQUATION FOR GENERATING CHAOS AND ITS MONOLITHIC IMPLEMENTATION. <i>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering</i> , 2002 , 12, 2885-2895	2	38
436	On inverse problem of generalized synchronization between different dimensional integer-order and fractional-order chaotic systems 2016 ,		38
435	Fractional-order Memristor Response Under DC and Periodic Signals. <i>Circuits, Systems, and Signal Processing,</i> 2015 , 34, 961-970	2.2	37
434	Capacitive behavior and stored energy in supercapacitors at power line frequencies. <i>Journal of Power Sources</i> , 2018 , 390, 142-147	8.9	37
433	. IEEE Transactions on Circuits and Systems I: Regular Papers, 2013 , 60, 2701-2708	3.9	37
432	A New Second-Order All-Pass Filter in 130-nm CMOS. <i>IEEE Transactions on Circuits and Systems II:</i> Express Briefs, 2016 , 63, 249-253	3.5	36

431	Fractional Resonance-BasedRL© Filters. Mathematical Problems in Engineering, 2013, 2013, 1-10	1.1	36
430	Further experimental evidence of the fractional-order energy equation in supercapacitors. <i>AEU</i> - International Journal of Electronics and Communications, 2017 , 78, 209-212	2.8	34
429	Extracting single dispersion ColeCole impedance model parameters using an integrator setup. <i>Analog Integrated Circuits and Signal Processing</i> , 2012 , 71, 107-110	1.2	34
428	. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019 , 66, 1484-1495	3.9	34
427	Switched-Capacitor Fractional-Step Butterworth Filter Design. <i>Circuits, Systems, and Signal Processing</i> , 2016 , 35, 1377-1393	2.2	33
426	Chua's circuit decomposition: a systematic design approach for chaotic oscillators. <i>Journal of the Franklin Institute</i> , 2000 , 337, 251-265	4	33
425	High frequency Wien-type chaotic oscillator. <i>Electronics Letters</i> , 1998 , 34, 1161	1.1	33
424	Experimental demonstration of fractional-order oscillators of orders 2.6 and 2.7. <i>Chaos, Solitons and Fractals</i> , 2017 , 96, 160-164	9.3	32
423	Chaos synchronisation of continuous systems via scalar signal 2017,		32
422	Fractional controllable multi-scroll V-shape attractor with parameters effect 2017 ,		32
421	Fractional controllable multi-scroll V-shape attractor with parameters effect 2017 , Multiscroll Chaotic Oscillators: The Nonautonomous Approach. <i>IEEE Transactions on Circuits and Systems Part 2: Express Briefs</i> , 2006 , 53, 862-866		32
	Multiscroll Chaotic Oscillators: The Nonautonomous Approach. <i>IEEE Transactions on Circuits and</i>	2.2	
421	Multiscroll Chaotic Oscillators: The Nonautonomous Approach. <i>IEEE Transactions on Circuits and Systems Part 2: Express Briefs</i> , 2006 , 53, 862-866 All Possible Topologies of the Fractional-Order Wien Oscillator Family Using Different	2.2	32
421 420	Multiscroll Chaotic Oscillators: The Nonautonomous Approach. <i>IEEE Transactions on Circuits and Systems Part 2: Express Briefs</i> , 2006 , 53, 862-866 All Possible Topologies of the Fractional-Order Wien Oscillator Family Using Different Approximation Techniques. <i>Circuits, Systems, and Signal Processing</i> , 2019 , 38, 3931-3951 Extracting the parameters of the single-dispersion Cole bioimpedance model using a		32
421 420 419	Multiscroll Chaotic Oscillators: The Nonautonomous Approach. <i>IEEE Transactions on Circuits and Systems Part 2: Express Briefs</i> , 2006 , 53, 862-866 All Possible Topologies of the Fractional-Order Wien Oscillator Family Using Different Approximation Techniques. <i>Circuits, Systems, and Signal Processing</i> , 2019 , 38, 3931-3951 Extracting the parameters of the single-dispersion Cole bioimpedance model using a magnitude-only method. <i>Computers and Electronics in Agriculture</i> , 2015 , 119, 153-157 Fractional X-shape controllable multi-scroll attractor with parameter effect and FPGA automatic	6.5	32 32 31
421 420 419 418	Multiscroll Chaotic Oscillators: The Nonautonomous Approach. <i>IEEE Transactions on Circuits and Systems Part 2: Express Briefs</i> , 2006 , 53, 862-866 All Possible Topologies of the Fractional-Order Wien Oscillator Family Using Different Approximation Techniques. <i>Circuits, Systems, and Signal Processing</i> , 2019 , 38, 3931-3951 Extracting the parameters of the single-dispersion Cole bioimpedance model using a magnitude-only method. <i>Computers and Electronics in Agriculture</i> , 2015 , 119, 153-157 Fractional X-shape controllable multi-scroll attractor with parameter effect and FPGA automatic design tool software. <i>Chaos, Solitons and Fractals</i> , 2019 , 126, 292-307 On the Realization of Multiphase Oscillators Using Fractional-Order Allpass Filters. <i>Circuits</i> ,	6.5 9.3	32 32 31 31
421 420 419 418 417	Multiscroll Chaotic Oscillators: The Nonautonomous Approach. <i>IEEE Transactions on Circuits and Systems Part 2: Express Briefs</i> , 2006 , 53, 862-866 All Possible Topologies of the Fractional-Order Wien Oscillator Family Using Different Approximation Techniques. <i>Circuits, Systems, and Signal Processing</i> , 2019 , 38, 3931-3951 Extracting the parameters of the single-dispersion Cole bioimpedance model using a magnitude-only method. <i>Computers and Electronics in Agriculture</i> , 2015 , 119, 153-157 Fractional X-shape controllable multi-scroll attractor with parameter effect and FPGA automatic design tool software. <i>Chaos, Solitons and Fractals</i> , 2019 , 126, 292-307 On the Realization of Multiphase Oscillators Using Fractional-Order Allpass Filters. <i>Circuits, Systems, and Signal Processing</i> , 2012 , 31, 3-17	6.5 9.3 2.2	32 31 31 31

(2016-2015)

413	Pinched hysteresis with inverse-memristor frequency characteristics in some nonlinear circuit elements. <i>Microelectronics Journal</i> , 2015 , 46, 834-838	1.8	30	
412	Emulation of current excited fractional-order capacitors and inductors using OTA topologies. <i>Microelectronics Journal</i> , 2016 , 55, 70-81	1.8	30	
411	Cross-coupled chaotic oscillators and application to random bit generation. <i>IET Circuits, Devices and Systems</i> , 2006 , 153, 506		30	
410	Parameter identification of fractional-order chaotic systems using different Meta-heuristic Optimization Algorithms. <i>Nonlinear Dynamics</i> , 2019 , 95, 2491-2542	5	30	
409	Wien oscillators using current conveyors. Computers and Electrical Engineering, 1999, 25, 45-55	4.3	29	
408	A semi-systematic procedure for producing chaos from sinusoidal oscillators using diode-inductor and FET-capacitor composites. <i>IEEE Transactions on Circuits and Systems Part 1: Regular Papers</i> , 2000 , 47, 582-590		28	
407	Fractional order integrator/differentiator: FPGA implementation and FOPID controller application. <i>AEU - International Journal of Electronics and Communications</i> , 2019 , 98, 220-229	2.8	28	
406	Dead-beat synchronization control in discrete-time chaotic systems 2017,		27	
405	Current conveyor chaos generators. <i>IEEE Transactions on Circuits and Systems Part 1: Regular Papers</i> , 1999 , 46, 393-398		27	
404	Fractional-order multi-phase oscillators design and analysis suitable for higher-order PSK applications. <i>Analog Integrated Circuits and Signal Processing</i> , 2016 , 87, 301-312	1.2	27	
403	Synchronization and FPGA realization of fractional-order Izhikevich neuron model. <i>Microelectronics Journal</i> , 2019 , 89, 56-69	1.8	26	
402	Ferroelectric Fractional-Order Capacitors. <i>ChemElectroChem</i> , 2017 , 4, 2807-2813	4.3	26	
401	Nonautonomous pulse-driven chaotic oscillator based on Chua's circuit. <i>Microelectronics Journal</i> , 2002 , 33, 479-486	1.8	26	
400	A family of Colpitts-like chaotic oscillators. <i>Journal of the Franklin Institute</i> , 1999 , 336, 687-700	4	26	
399	Short-term memory in electric double-layer capacitors. <i>Applied Physics Letters</i> , 2018 , 113, 253901	3.4	26	
398	Realization of fractional-order capacitor based on passive symmetric network. <i>Journal of Advanced Research</i> , 2019 , 18, 147-159	13	25	
397	Single active element implementation of fractional-order differentiators and integrators. <i>AEU</i> - <i>International Journal of Electronics and Communications</i> , 2018 , 97, 6-15	2.8	24	
396	Reduced Graphene Oxide Thin Film on Conductive Substrates by Bipolar Electrochemistry. <i>Scientific Reports</i> , 2016 , 6, 21282	4.9	23	

395	Image encryption using generalized tent map 2013,		22
394	Least squares estimation technique of Cole-Cole parameters from step response. <i>Electronics Letters</i> , 2012 , 48, 752	1.1	22
393	Experimental Verification of Fractional-Order Filters Using a Reconfigurable Fractional-Order Impedance Emulator. <i>Journal of Circuits, Systems and Computers</i> , 2017 , 26, 1750142	0.9	21
392	All-Solid-State Double-Layer Capacitors Using Binderless Reduced Graphene Oxide Thin Films Prepared by Bipolar Electrochemistry. <i>ChemElectroChem</i> , 2017 , 4, 2084-2090	4.3	21
391	FPGA implementation of sound encryption system based on fractional-order chaotic systems. <i>Microelectronics Journal</i> , 2019 , 90, 323-335	1.8	21
390	Comprehensive comparison based on meta-heuristic algorithms for approximation of the fractional-order Laplacian sas a weighted sum of first-order high-pass filters. <i>Microelectronics Journal</i> , 2019 , 87, 110-120	1.8	21
389	Supercapacitor discharge under constant resistance, constant current and constant power loads. Journal of Power Sources, 2019 , 435, 226829	8.9	21
388	Chaos in pulse-excited resonator with self feedback. <i>Electronics Letters</i> , 2003 , 39, 831	1.1	21
387	On the necessary and sufficient conditions for latch-up in sinusoidal oscillators. <i>International Journal of Electronics</i> , 2002 , 89, 197-206	1.2	21
386	Mathematical Models of the Twin-T, Wien-bridgeand Family of Minimum Component Electronic ChaosGenerators with Demonstrative Recurrence Plots. <i>Chaos, Solitons and Fractals</i> , 1999 , 10, 1399-14	12 ^{.3}	21
385	FPGA realization of a speech encryption system based on a generalized modified chaotic transition map and bit permutation. <i>Multimedia Tools and Applications</i> , 2019 , 78, 16097-16127	2.5	21
384	On the Approximations of CFOA-Based Fractional-Order Inverse Filters. <i>Circuits, Systems, and Signal Processing</i> , 2020 , 39, 2-29	2.2	21
383	Experimental behavior evaluation of series and parallel connected constant phase elements. <i>AEU</i> - <i>International Journal of Electronics and Communications</i> , 2017 , 74, 5-12	2.8	20
382	Supercapacitor reciprocity and response to linear current and voltage ramps. <i>Electrochimica Acta</i> , 2017 , 258, 1081-1085	6.7	20
381	Design of Positive, Negative, and Alternating Sign Generalized Logistic Maps. <i>Discrete Dynamics in Nature and Society</i> , 2015 , 2015, 1-23	1.1	20
380	Systematic realization of a class of hysteresis chaotic oscillators. <i>International Journal of Circuit Theory and Applications</i> , 2000 , 28, 319-334	2	20
379	Inductorless hyperchaos generator. <i>Microelectronics Journal</i> , 1999 , 30, 739-743	1.8	20
378	Comparison between three approximation methods on oscillator circuits. <i>Microelectronics Journal</i> , 2018 , 81, 162-178	1.8	20

(2015-2020)

377	Generalized switched synchronization and dependent image encryption using dynamically rotating fractional-order chaotic systems. <i>AEU - International Journal of Electronics and Communications</i> , 2020 , 123, 153268	2.8	19
376	An expression for the voltage response of a current-excited fractance device based on fractional-order trigonometric identities. <i>International Journal of Circuit Theory and Applications</i> , 2012 , 40, 533-538	2	19
375	2010,		19
374	A Grunwaldletnikov based Manta ray foraging optimizer for global optimization and image segmentation. <i>Engineering Applications of Artificial Intelligence</i> , 2021 , 98, 104105	7.2	19
373	Extraction of Phase Information from Magnitude-Only Bio-impedance Measurements Using a Modified Kramers Transform. <i>Circuits, Systems, and Signal Processing</i> , 2018 , 37, 3635-3650	2.2	19
372	Finite Precision Logistic Map between Computational Efficiency and Accuracy with Encryption Applications. <i>Complexity</i> , 2017 , 2017, 1-21	1.6	18
371	High-Frequency Capacitorless Fractional-Order CPE and FI Emulator. <i>Circuits, Systems, and Signal Processing</i> , 2018 , 37, 2694-2713	2.2	18
370	Two Twin-T based op amp oscillators modified for chaos. <i>Journal of the Franklin Institute</i> , 1998 , 335, 771	_≠ 787	18
369	On the realization of circuit-independent nonautonomous pulse-excited chaotic oscillator circuits. <i>IEEE Transactions on Circuits and Systems Part 2: Express Briefs</i> , 2004 , 51, 552-556		18
368	A system for chaos generation and its implementation in monolithic form		18
367	Enhanced hardware implementation of a mixed-order nonlinear chaotic system and speech encryption application. <i>AEU - International Journal of Electronics and Communications</i> , 2020 , 125, 153347	7 ^{2.8}	18
366	Extracting Optimized Bio-Impedance Model Parameters Using Different Topologies of Oscillators. <i>IEEE Sensors Journal</i> , 2020 , 20, 9947-9954	4	18
365	Fundamentals of fractional-order LTI circuits and systems: number of poles, stability, time and frequency responses. <i>International Journal of Circuit Theory and Applications</i> , 2016 , 44, 2114-2133	2	18
364	Design and application examples of CMOS fractional-order differentiators and integrators. <i>Microelectronics Journal</i> , 2019 , 83, 155-167	1.8	18
363	Power law filters: A new class of fractional-order filters without a fractional-order Laplacian operator. <i>AEU - International Journal of Electronics and Communications</i> , 2021 , 129, 153537	2.8	18
362	Generalized Synchronization of Different Dimensional Integer-Order and Fractional Order Chaotic Systems. <i>Studies in Computational Intelligence</i> , 2017 , 671-697	0.8	17
361	Simple non-impedance-based measuring technique for supercapacitors. <i>Electronics Letters</i> , 2015 , 51, 1699-1701	1.1	17
360	Resistive-less memcapacitor-based relaxation oscillator. <i>International Journal of Circuit Theory and Applications</i> , 2015 , 43, 959-965	2	17

359	Numerical Simulations and FPGA Implementations of Fractional-Order Systems Based on Product Integration Rules. <i>IEEE Access</i> , 2020 , 8, 102093-102105	3.5	17
358	FPGA realizations of high-speed switching-type chaotic oscillators using compact VHDL codes. <i>Nonlinear Dynamics</i> , 2018 , 93, 819-833	5	17
357	On the Analysis and Design of Fractional-Order Chebyshev Complex Filter. <i>Circuits, Systems, and Signal Processing</i> , 2018 , 37, 915-938	2.2	17
356	Hardware Optimized FPGA Implementations of High-Speed True Random Bit Generators Based on Switching-Type Chaotic Oscillators. <i>Circuits, Systems, and Signal Processing,</i> 2019 , 38, 1342-1359	2.2	17
355	DC and AC Performance of Graphite Films Supercapacitors Prepared by Contact Glow Discharge Electrolysis. <i>Journal of the Electrochemical Society</i> , 2017 , 164, A2539-A2546	3.9	17
354	Fractional-Order and Memristive Nonlinear Systems: Advances and Applications. <i>Complexity</i> , 2017 , 2017, 1-2	1.6	17
353	Meminductor Response Under Periodic Current Excitations. <i>Circuits, Systems, and Signal Processing</i> , 2014 , 33, 1573-1583	2.2	17
352	Systematic realization of low-frequency oscillators using composite passive-active resistors. <i>IEEE Transactions on Instrumentation and Measurement</i> , 1998 , 47, 584-586	5.2	17
351	CHAOTIC OSCILLATOR CONFIGURATION USING A FREQUENCY DEPENDENT NEGATIVE RESISTOR. Journal of Circuits, Systems and Computers, 1999 , 09, 229-242	0.9	17
350	Design of a Portable Low-Cost Impedance Analyzer 2017 ,		17
349	Multiplierless chaotic Pseudo random number generators. <i>AEU - International Journal of Electronics and Communications</i> , 2020 , 113, 152947	2.8	17
348	FPGA realization of Caputo and Grāwald-Letnikov operators 2017 ,		16
347	Cole Bio-Impedance Model Variations in \$Daucus~Carota~Sativus\$ Under Heating and Freezing Conditions. <i>IEEE Access</i> , 2019 , 1-1	3.5	16
346	One-terminal electronically controlled fractional-order capacitor and inductor emulator. <i>AEU - International Journal of Electronics and Communications</i> , 2019 , 103, 32-45	2.8	16
345	A study of the nonlinear dynamics of human behavior and its digital hardware implementation. Journal of Advanced Research, 2020 , 25, 111-123	13	16
344	Image encryption in the fractional-order domain 2012 ,		16
J.1			
343	On the two-port network classification of Colpitts oscillators. <i>IET Circuits, Devices and Systems</i> , 2009 , 3, 223-232	1.1	16

341	Low-voltage commercial super-capacitor response to periodic linear-with-time current excitation: a case study. <i>IET Circuits, Devices and Systems</i> , 2017 , 11, 189-195	1.1	15	
340	Ternary Functions Design Using Memristive Threshold Logic. <i>IEEE Access</i> , 2019 , 7, 48371-48381	3.5	15	
339	Digitally programmed fractional-order Chebyshev filters realizations using current-mirrors 2015,		15	
338	Single Transistor Active Filters: What is Possible and What is Not. <i>IEEE Transactions on Circuits and Systems I: Regular Papers</i> , 2014 , 61, 2517-2524	3.9	15	
337	MOS-only allpass filters with extended operating frequency range. <i>Analog Integrated Circuits and Signal Processing</i> , 2014 , 81, 17-22	1.2	15	
336	Numerical extraction of Cole-Cole impedance parameters from step response. <i>Nonlinear Theory and Its Applications IEICE</i> , 2011 , 2, 548-561	0.6	15	
335	On the two-port network analysis of common amplifier topologies. <i>International Journal of Circuit Theory and Applications</i> , 2010 , 38, 1087-1100	2	15	
334	Chaotic oscillator configuration using a frequency dependent negative resistor. <i>International Journal of Circuit Theory and Applications</i> , 2000 , 28, 69-76	2	15	
333	Chaotic Oscillators Derived from Sinusoidal Oscillators Based on the Current Feedback Op Amp. <i>Analog Integrated Circuits and Signal Processing</i> , 2000 , 24, 239-251	1.2	15	
332	Low-voltage relaxation oscillator. <i>Electronics Letters</i> , 2000 , 36, 1256	1.1	15	
331	Analysis and realization of a switched fractional-order-capacitor integrator. <i>International Journal of Circuit Theory and Applications</i> , 2016 , 44, 2035-2040	2	15	
330	Variability of Cole-model bioimpedance parameters using magnitude-only measurements of apples from a two-electrode configuration. <i>International Journal of Food Properties</i> , 2017 , 20, S507-S519	3	14	
329	Generalized Dynamic Switched Synchronization between Combinations of Fractional-Order Chaotic Systems. <i>Complexity</i> , 2017 , 2017, 1-17	1.6	14	
328	An optimal linear system approximation of nonlinear fractional-order memristordapacitor charging circuit. <i>Microelectronics Journal</i> , 2016 , 51, 58-66	1.8	14	
327	A generalized family of memristor-based voltage controlled relaxation oscillator. <i>International Journal of Circuit Theory and Applications</i> , 2018 , 46, 1311-1327	2	14	
326	Current-mode capacitorless integrators and differentiators for implementing emulators of fractional-order elements. <i>AEU - International Journal of Electronics and Communications</i> , 2017 , 80, 94-1	103.8	14	
325	Design of non-balanced cross-coupled oscillators with no matching requirements. <i>IET Circuits, Devices and Systems</i> , 2010 , 4, 365	1.1	14	
324	Current mode chaos generator. <i>Electronics Letters</i> , 1997 , 33, 1661	1.1	14	

323	GENERIC RC REALIZATIONS OF CHUA'S CIRCUIT. <i>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering</i> , 2000 , 10, 1981-1985	2	14
322	Two Modified for Chaos Negative Impedance Converter Op Amp Oscillators with Symmetrical and Antisymmetrical Nonlinearities. <i>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering</i> , 1998 , 08, 1335-1346	2	14
321	Quantification of memory in fractional-order capacitors. <i>Journal Physics D: Applied Physics</i> , 2020 , 53, 02	L₹03	14
320	Memristor FPGA IP Core Implementation for Analog and Digital Applications. <i>IEEE Transactions on Circuits and Systems II: Express Briefs</i> , 2019 , 66, 1381-1385	3.5	14
319	Generalized Fully Adjustable Structure for Emulating Fractional-Order Capacitors and Inductors of Orders less than Two. <i>Circuits, Systems, and Signal Processing</i> , 2020 , 39, 1797-1814	2.2	14
318	On the modeling of dispersive transient photocurrent response of organic solar cells. <i>Organic Electronics</i> , 2019 , 70, 42-47	3.5	13
317	Nonlinear charge-voltage relationship in constant phase element. <i>AEU - International Journal of Electronics and Communications</i> , 2020 , 117, 153104	2.8	13
316	Memcapacitor response under step and sinusoidal voltage excitations. <i>Microelectronics Journal</i> , 2014 , 45, 1372-1379	1.8	13
315	Novel Approximate Square-Root Domain All-Pass Filter with Application to Multiphase Oscillators. <i>Analog Integrated Circuits and Signal Processing</i> , 2006 , 46, 297-301	1.2	13
314	Novel chaotic oscillator configuration using a diode-inductor composite. <i>International Journal of Electronics</i> , 2000 , 87, 397-406	1.2	13
313	Fractional-order electric double-layer capacitors with tunable low-frequency impedance phase angle and energy storage capabilities. <i>Applied Physics Letters</i> , 2020 , 116, 013902	3.4	13
312	Fractional-Order Two-Port Networks. <i>Mathematical Problems in Engineering</i> , 2016 , 2016, 1-5	1.1	13
311	Nonlinear time-series analysis of current signal in cathodic contact glow discharge electrolysis. Journal of Applied Physics, 2016 , 119, 203303	2.5	13
310	Novel two-measurements-only Cole-Cole bio-impedance parameters extraction technique. <i>Measurement: Journal of the International Measurement Confederation</i> , 2019 , 131, 394-399	4.6	13
309	Double Exponent Fractional-Order Filters: Approximation Methods and Realization. <i>Circuits, Systems, and Signal Processing,</i> 2021 , 40, 993-1004	2.2	13
308	A Study on Coexistence of Different Types of Synchronization Between Different Dimensional Fractional Chaotic Systems. <i>Studies in Computational Intelligence</i> , 2017 , 637-669	0.8	12
307	Transient and Steady-State Response of a Fractional-Order Dynamic PV Model Under Different Loads. <i>Journal of Circuits, Systems and Computers</i> , 2018 , 27, 1850023	0.9	12
306	An image encryption system based on generalized discrete maps 2014 ,		12

305	A SYSTEM AND CIRCUIT FOR GENERATING "MULTI-BUTTERFLIES". <i>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering</i> , 2008 , 18, 841-844	2	12
304	On the pinched hysteresis behavior in a state-controlled resistor. <i>AEU - International Journal of Electronics and Communications</i> , 2017 , 74, 171-175	2.8	11
303	Multiple Pinch-Off Points in Memristive Equations: Analysis and Experiments. <i>IEEE Transactions on Circuits and Systems I: Regular Papers</i> , 2019 , 66, 3052-3063	3.9	11
302	Two-Dimensional Rotation of Chaotic Attractors: Demonstrative Examples and FPGA Realization. <i>Circuits, Systems, and Signal Processing</i> , 2019 , 38, 4890-4903	2.2	11
301	Employment of the Padlapproximation for implementing fractional-order lead/lag compensators. AEU - International Journal of Electronics and Communications, 2020 , 120, 153203	2.8	11
300	Electronically tunable fractional-order highpass filter for phantom electroencephalographic system model implementation. <i>AEU - International Journal of Electronics and Communications</i> , 2019 , 110, 15285	♂.8	11
299	Memristor-less current- and voltage-controlled meminductor emulators 2014,		11
298	. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2013 , 3, 297-300	5.2	11
297	Chaos from two modified oscillator configurations using a current feedback op amp. <i>Chaos, Solitons and Fractals</i> , 1997 , 8, 389-410	9.3	11
296	Optimized Edge Detection Technique for Brain Tumor Detection in MR Images. <i>IEEE Access</i> , 2020 , 8, 136	5 <u>3</u> . 4 3-1	3 6 259
296 295	Optimized Edge Detection Technique for Brain Tumor Detection in MR Images. <i>IEEE Access</i> , 2020 , 8, 136 Fractional-order inverting and non-inverting filters based on CFOA 2016 ,	5 <i>3.4</i> 3-1	3 6 259
		5 3 43-1	
295	Fractional-order inverting and non-inverting filters based on CFOA 2016 ,	6.7	11
² 95	Fractional-order inverting and non-inverting filters based on CFOA 2016 , A Wideband Delay-Tunable Fully Differential Allpass Filter in 65-nm CMOS Technology 2019 , On the N-shaped Conductance and Hysteresis Behavior of Contact Glow Discharge Electrolysis.		11
295 294 293	Fractional-order inverting and non-inverting filters based on CFOA 2016, A Wideband Delay-Tunable Fully Differential Allpass Filter in 65-nm CMOS Technology 2019, On the N-shaped Conductance and Hysteresis Behavior of Contact Glow Discharge Electrolysis. Electrochimica Acta, 2015, 168, 173-177 Neuron Model with Simplified Memristive Ionic Channels. International Journal of Bifurcation and	6.7	11 10 10
295 294 293 292	Fractional-order inverting and non-inverting filters based on CFOA 2016, A Wideband Delay-Tunable Fully Differential Allpass Filter in 65-nm CMOS Technology 2019, On the N-shaped Conductance and Hysteresis Behavior of Contact Glow Discharge Electrolysis. Electrochimica Acta, 2015, 168, 173-177 Neuron Model with Simplified Memristive Ionic Channels. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2015, 25, 1530017 Software and Hardware Implementation Sensitivity of Chaotic Systems and Impact on Encryption	6.7	11 10 10
295 294 293 292 291	Fractional-order inverting and non-inverting filters based on CFOA 2016, A Wideband Delay-Tunable Fully Differential Allpass Filter in 65-nm CMOS Technology 2019, On the N-shaped Conductance and Hysteresis Behavior of Contact Glow Discharge Electrolysis. Electrochimica Acta, 2015, 168, 173-177 Neuron Model with Simplified Memristive Ionic Channels. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2015, 25, 1530017 Software and Hardware Implementation Sensitivity of Chaotic Systems and Impact on Encryption Applications. Circuits, Systems, and Signal Processing, 2020, 39, 5638-5655 Identifying the Parameters of Cole Impedance Model Using Magnitude Only and Complex Impedance Measurements: A Metaheuristic Optimization Approach. Arabian Journal for Science and	6.7	11 10 10 10 10

287	Generalized fractional logistic map suitable for data encryption 2015,		10
286	All possible second-order four-impedance two-stage Colpitts oscillators. <i>IET Circuits, Devices and Systems</i> , 2011 , 5, 196	1.1	10
285	Explaining and eliminating latchup in a classical Wien oscillator via nonlinear design. <i>Analog Integrated Circuits and Signal Processing</i> , 2006 , 48, 239-245	1.2	10
284	A low-voltage, low-power, chaotic oscillator, derived from a relaxation oscillator. <i>Microelectronics Journal</i> , 2000 , 31, 459-468	1.8	10
283	A general emulator for fractional-order memristive elements with multiple pinched points and application. <i>AEU - International Journal of Electronics and Communications</i> , 2020 , 124, 153338	2.8	10
282	Revisiting the Time-Domain and Frequency-Domain Definitions of Capacitance. <i>IEEE Transactions on Electron Devices</i> , 2021 , 68, 2912-2916	2.9	10
281	Experimental verification of filters using fractional-order capacitor and inductor emulators 2016,		10
2 80	Aging effect on apples bio-impedance using AD5933 2016 ,		10
279	Minimization of Spread of Time-Constants and Scaling Factors in Fractional-Order Differentiator and Integrator Realizations. <i>Circuits, Systems, and Signal Processing,</i> 2018 , 37, 5647-5663	2.2	10
278	Generalized Smooth Transition Map Between Tent and Logistic Maps. <i>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering</i> , 2017 , 27, 1730004	2	9
277	Enhanced FPGA realization of the fractional-order derivative and application to a variable-order chaotic system. <i>Nonlinear Dynamics</i> , 2020 , 99, 3143-3154	5	9
276	Simple MOS-based circuit designed to show pinched hysteresis behavior. <i>International Journal of Circuit Theory and Applications</i> , 2018 , 46, 1123-1128	2	9
275	A low frequency oscillator structure 2009 ,		9
274	2007,		9
273	Fractional-Order Bio-Impedance Modeling for Interdisciplinary Applications: A Review. <i>IEEE Access</i> , 2021 , 9, 33158-33168	3.5	9
272	Biologically Inspired Optimization Algorithms for Fractional-Order Bioimpedance Models Parameters Extraction 2018 , 125-162		9
271	Minimal two-transistor multifunction filter design. <i>International Journal of Circuit Theory and Applications</i> , 2017 , 45, 1449-1466	2	8
270	Controlled Picard Method for Solving Nonlinear Fractional Reaction Diffusion Models in Porous Catalysts. <i>Chemical Engineering Communications</i> , 2017 , 204, 635-647	2.2	8

269	Design and Implementation of Portable Impedance Analyzers 2019,		8
268	FPGA implementation of a chaotic oscillator with odd/even symmetry and its application. <i>The Integration VLSI Journal</i> , 2020 , 72, 163-170	1.4	8
267	A four-quadrant current multiplier/divider cell with four transistors. <i>Analog Integrated Circuits and Signal Processing</i> , 2018 , 95, 173-179	1.2	8
266	Applications of Continuous-time Fractional Order Chaotic Systems 2018 , 409-449		8
265	Communication Lonvolution-Based Estimation of Supercapacitor Parameters under Periodic Voltage Excitations. <i>Journal of the Electrochemical Society</i> , 2019 , 166, A2267-A2269	3.9	8
264	Fractional order oscillator with independent control of phase and frequency 2014,		8
263	2013,		8
262	Three-phase oscillator modified for chaos. <i>Microelectronics Journal</i> , 1999 , 30, 863-867	1.8	8
261	Design and Implementation of an Optimized Artificial Human Eardrum Model. <i>Circuits, Systems, and Signal Processing</i> , 2020 , 39, 3219-3233	2.2	8
260	Fractional-order oscillator based on single CCII 2016 ,		8
260 259	Fractional-order oscillator based on single CCII 2016 , Band-Pass Filter and Relaxation Oscillator using Electric Double-Layer Capacitor. <i>ChemElectroChem</i> , 2018 , 5, 3793-3798	4.3	8
	Band-Pass Filter and Relaxation Oscillator using Electric Double-Layer Capacitor. ChemElectroChem,	4·3 3·5	
259	Band-Pass Filter and Relaxation Oscillator using Electric Double-Layer Capacitor. <i>ChemElectroChem</i> , 2018 , 5, 3793-3798		
259 258	Band-Pass Filter and Relaxation Oscillator using Electric Double-Layer Capacitor. <i>ChemElectroChem</i> , 2018 , 5, 3793-3798 . <i>IEEE Access</i> , 2021 , 9, 89376-89389 Memristor and Inverse Memristor: Modeling, Implementation and Experiments. <i>Studies in</i>	3.5	8
259 258 257	Band-Pass Filter and Relaxation Oscillator using Electric Double-Layer Capacitor. <i>ChemElectroChem</i> , 2018 , 5, 3793-3798 **IEEE Access*, 2021 , 9, 89376-89389 Memristor and Inverse Memristor: Modeling, Implementation and Experiments. <i>Studies in Computational Intelligence</i> , 2017 , 371-392 Fractional-order impedance transformation based on three port mutators. <i>AEU - International</i>	3.5 0.8	8 8 7
259 258 257 256	Band-Pass Filter and Relaxation Oscillator using Electric Double-Layer Capacitor. <i>ChemElectroChem</i> , 2018 , 5, 3793-3798 . <i>IEEE Access</i> , 2021 , 9, 89376-89389 Memristor and Inverse Memristor: Modeling, Implementation and Experiments. <i>Studies in Computational Intelligence</i> , 2017 , 371-392 Fractional-order impedance transformation based on three port mutators. <i>AEU - International Journal of Electronics and Communications</i> , 2017 , 81, 12-22 Fractional order Chebyshev-like low-pass filters based on integer order poles. <i>Microelectronics</i>	3.5 0.8 2.8	8 8 7
259 258 257 256 255	Band-Pass Filter and Relaxation Oscillator using Electric Double-Layer Capacitor. <i>ChemElectroChem</i> , 2018 , 5, 3793-3798 . <i>IEEE Access</i> , 2021 , 9, 89376-89389 Memristor and Inverse Memristor: Modeling, Implementation and Experiments. <i>Studies in Computational Intelligence</i> , 2017 , 371-392 Fractional-order impedance transformation based on three port mutators. <i>AEU - International Journal of Electronics and Communications</i> , 2017 , 81, 12-22 Fractional order Chebyshev-like low-pass filters based on integer order poles. <i>Microelectronics Journal</i> , 2019 , 90, 72-81 Realizations of simple fractional-order capacitor emulators with electronically-tunable capacitance.	3.5 0.8 2.8	8 8 7 7

251	Conditions and Emulation of Double Pinch-off Points in Fractional-order Memristor 2018,		7
250	Chaos-based hardware speech encryption scheme using modified tent map and bit permutation 2018 ,		7
249	Stability analysis of fractional-order Colpitts oscillators. <i>Analog Integrated Circuits and Signal Processing</i> , 2019 , 101, 267-279	1.2	7
248	Boundary Dynamics of Memcapacitor in Voltage-Excited Circuits and Relaxation Oscillators. <i>Circuits, Systems, and Signal Processing,</i> 2015 , 34, 2765-2783	2.2	7
247	A chess-based chaotic block cipher 2014 ,		7
246	2010,		7
245	Chaos from a family of minimum-component oscillators. <i>Chaos, Solitons and Fractals</i> , 1997 , 8, 335-356	9.3	7
244	. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 2006 , 53, 1521-1532		7
243	Integrator-based circuit-independent chaotic oscillator structure. <i>Chaos</i> , 2004 , 14, 364-9	3.3	7
242	Generation of n-scroll chaos using nonlinear transconductors		7
241	Single transistor RC-only second-order allpass filters. <i>International Journal of Circuit Theory and Applications</i> , 2020 , 48, 162-169	2	7
240	A fractional-order dynamic PV model 2016 ,		7
239	Automatic Generation of Differential-Input Differential-Output Second-Order Filters Based on a Differential Pair. <i>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems</i> , 2020 , 39, 1258-1271	2.5	7
238	Experimental Verification of Triple Lobes Generation in Fractional Memristive Circuits. <i>IEEE Access</i> , 2018 , 6, 75169-75180	3.5	7
237	Survey on Two-Port Network-Based Fractional-Order Oscillators 2018, 305-327		7
236	Aluminum influence on Calotropis procera seedling growth, nutrient accumulation and electrochemical attributes. <i>Flora: Morphology, Distribution, Functional Ecology of Plants</i> , 2018 , 248, 34-4	2 ^{1.9}	7
235	Fractional-Order Inductor: Design, Simulation, and Implementation. <i>IEEE Access</i> , 2021 , 9, 73695-73702	3.5	7
234	Reduced Active Components Count Electronically Adjustable Fractional-Order Controllers: Two Design Examples. <i>Electronics (Switzerland)</i> , 2020 , 9, 63	2.6	6

233	Wideband third-order single-transistor all-pass filter. <i>International Journal of Circuit Theory and Applications</i> , 2020 , 48, 1201-1208	2	6
232	Single-Transistor Second-Order Allpass Filters 2019 ,		6
231	2017,		6
230	Improved Cole-Cole parameter extraction from frequency response using least squares fitting 2012 ,		6
229	Accurate time domain extraction of supercapacitor fractional-order model parameters 2013,		6
228	HIGHER DIMENSIONAL MODELS OF CROSS-COUPLED OSCILLATORS AND APPLICATION TO DESIGN. <i>Journal of Circuits, Systems and Computers</i> , 2010 , 19, 787-799	0.9	6
227	An integrated circuit chaotic oscillator and its application for high speed random bit generation		6
226	CMOS current feedback op amp-based chaos generators using novel active nonlinear voltage controlled resistors with odd symmetrical characteristics. <i>International Journal of Electronics</i> , 1999 , 86, 1441-1451	1.2	6
225	Communication The Ragone Plot of Supercapacitors Under Different Loading Conditions. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 020533	3.9	6
224	Implementation and analysis of tunable fractional-order band-pass filter of order 2\flactbackappa AEU - International Journal of Electronics and Communications, 2020 , 124, 153343	2.8	6
223	. IEEE Transactions on Microwave Theory and Techniques, 2020 , 68, 4348-4360	4.1	6
222	2016,		6
221	Bio-impedance Measurements with Phase Extraction using the Kramers-Kronig transform: Application to Strawberry Aging 2018 ,		6
220	On the Approximation of Fractional-Order Circuit Design 2018 , 239-270		6
219	Cancellable face recognition based on fractional-order Lorenz chaotic system and Haar wavelet fusion 2021 , 116, 103103		6
218	Toward Portable Bio-impedance devices 2019 ,		5
217	Simple Multi-Function Fractional-Order Filter Designs 2019 ,		5
216	Low-voltage and low-power fractional-order parallel tunable resonator. <i>Microelectronics Journal</i> , 2019 , 88, 108-116	1.8	5

215	Modulating the energy storage of supercapacitors by mixing close-to-ideal and far-from-ideal capacitive carbon nanofibers. <i>Electrochimica Acta</i> , 2019 , 301, 465-471	6.7	5
214	Fractional chaos maps with flower pollination algorithm for chaotic systems parameters identification. <i>Neural Computing and Applications</i> , 2020 , 32, 16291-16327	4.8	5
213	Implementation of a Fractional-Order Electronically Reconfigurable Lung Impedance Emulator of the Human Respiratory Tree. <i>Journal of Low Power Electronics and Applications</i> , 2020 , 10, 18	1.7	5
212	Variability of supercapacitor fractional-order parameters extracted from discharging behavior using least squares optimization 2017 ,		5
211	Fractional-Order Multiphase Sinusoidal Oscillator Design Using Current-Mirrors 2018,		5
210	Frequency-Dependent Effective Capacitance of Supercapacitors Using Electrospun Cobalt-Carbon Composite Nanofibers. <i>Journal of the Electrochemical Society</i> , 2019 , 166, A2403-A2408	3.9	5
209	Analysis and experimental verification of a fractional-order Hartley oscillator 2017,		5
208	FPGA implementation of fractional-order integrator and differentiator based on GrBwald Letnikov's definition 2017 ,		5
207	All possible canonical second-order three-impedance class-A and class-B oscillators. <i>Electronics Letters</i> , 2010 , 46, 748	1.1	5
206	New chaos generators. <i>Chaos, Solitons and Fractals</i> , 1997 , 8, 1921-1932	9.3	5
205	Chaos and Bifurcation in Controllable Jerk-Based Self-Excited Attractors. <i>Studies in Systems, Decision and Control</i> , 2018 , 45-70	0.8	5
204	Realization of ColeDavidson Function-Based Impedance Models: Application on Plant Tissues. <i>Fractal and Fractional</i> , 2020 , 4, 54	3	5
203	Decoupling the magnitude and phase in a constant phase element. <i>Journal of Electroanalytical Chemistry</i> , 2021 , 888, 115153	4.1	5
202	Possibility of information encoding/decoding using the memory effect in fractional-order capacitive devices. <i>Scientific Reports</i> , 2021 , 11, 13306	4.9	5
201	Modelling and implementation of soft bio-mimetic turtle using echo state network and soft pneumatic actuators. <i>Scientific Reports</i> , 2021 , 11, 12076	4.9	5
200	Trajectory control and image encryption using affine transformation of lorenz system. <i>Egyptian Informatics Journal</i> , 2021 , 22, 155-166	3.1	5
199	Design and FPGA Verification of Custom-Shaped Chaotic Attractors Using Rotation, Offset Boosting and Amplitude Control. <i>IEEE Transactions on Circuits and Systems II: Express Briefs</i> , 2021 , 1-1	3.5	5
198	Hardware Speech Encryption Using a Chaotic Generator, Dynamic Shift and Bit Permutation 2018 ,		5

197	True random bit generators based on current time series of contact glow discharge electrolysis. Journal of Applied Physics, 2018 , 123, 203301	2.5	5
196	Realizations of fractional-order PID loop-shaping controller for mechatronic applications. <i>The Integration VLSI Journal</i> , 2021 , 80, 5-12	1.4	5
195	Chaotic systems based on jerk equation and discrete maps with scaling parameters 2017,		4
194	Fractional order four-phase oscillator based on double integrator topology 2017,		4
193	Extraction of bioimpedance phase information from its magnitude using a non-uniform Kramers-Kronig transform. <i>European Biophysics Journal</i> , 2020 , 49, 207-213	1.9	4
192	Fast Spectral Impedance Measurement Method Using a Structured Random Excitation. <i>IEEE Sensors Journal</i> , 2020 , 20, 8637-8642	4	4
191	Fractional-Order Model (FOM) for high-strength substrate biodegradation in conventional UASB reactor. <i>Biochemical Engineering Journal</i> , 2018 , 133, 39-46	4.2	4
190	Indirect Realization of the Imaginary Resistor jR. Circuits, Systems, and Signal Processing, 2016, 35, 2610-	2615	4
189	Study of fractional flux-controlled memristor emulator connections 2018,		4
188	All-Pass Filter Based Synthesis of Multifunctional Microwave Active Circuits 2017 ,		4
187	Series and parallel circuit models containing memristors and inverse memristors 2015,		4
186	Fractional order oscillators with single non-zero transmission matrix element 2015,		4
185	Multi-phase oscillator for higher-order PSK applications 2014 ,		4
184	The effect of multi-scrolls distribution on image encryption 2014 ,		4
183	Fully digital 1-D, 2-D and 3-D multiscroll chaos as hardware pseudo random number generators 2012 ,		4
182	Transient-Time Fractional-Space Trigonometry and Application. <i>Lecture Notes in Computer Science</i> , 2012 , 40-47	0.9	4
181	General procedure for two integrator loops fractional order oscillators with controlled phase difference 2013 ,		4
180	CCII based KHN fractional order filter 2013 ,		4

179	Motivating Two-Port Network Analysis through Elementary and Advanced Examples. <i>International Journal of Electrical Engineering and Education</i> , 2010 , 47, 404-415	0.6	4
178	IMPLEMENTATION OF AN ENCRYPTED WIRELESS COMMUNICATION SYSTEM USING NESTED CHAOTIC MAPS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2010 , 20, 4087-4096	2	4
177	Implementation of a Chaotically Encrypted Wireless Communication System 2009,		4
176	Band-pass filters with high quality factors and asymmetric-slope characteristics 2011 ,		4
175	Highlighting a Common Confusion in the Computation of Capacitance of Electrochemical Energy Storage Devices. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 9591-9592	3.8	4
174	Power-Law Compensator Design for Plants with Uncertainties: Experimental Verification. <i>Electronics (Switzerland)</i> , 2021 , 10, 1305	2.6	4
173	Optimal fractional-order PI with DC-DC converter and PV system. <i>Ain Shams Engineering Journal</i> , 2021 , 12, 1895-1906	4.4	4
172	CFOA-based fractional order simulated inductor 2016 ,		4
171	8-GHz Low-Power Voltage-Mode Second-Order Allpass Filter in 65-nm CMOS 2019 ,		4
170	An Ultra-Low Power Wide-Band Single-Transistor Second-Order Allpass Filter in 65nm CMOS 2019 ,		4
169	Design of FOPID Controller for a DC Motor Using Approximation Techniques 2019 ,		4
168	Digital Emulation of a Versatile Memristor With Speech Encryption Application. <i>IEEE Access</i> , 2019 , 7, 174280-174297	3.5	4
167	Rates and Effects of Local Minima on Fractional-Order Circuit Model Parameters Extracted from Supercapacitor Discharging Using Least Squares Optimization. <i>Circuits, Systems, and Signal Processing</i> , 2019 , 38, 1907-1922	2.2	4
166	Hardware realization of a secure and enhanced s-box based speech encryption engine. <i>Analog Integrated Circuits and Signal Processing</i> , 2021 , 106, 385-397	1.2	4
165	Two implementations of fractional-order relaxation oscillators. <i>Analog Integrated Circuits and Signal Processing</i> , 2021 , 106, 421-432	1.2	4
164	Tactile sensing biohybrid soft E-skin based on bioimpedance using aloe vera pulp tissues. <i>Scientific Reports</i> , 2021 , 11, 3054	4.9	4
163	Fractional-Order Edge Detection Masks for Diabetic Retinopathy Diagnosis as a Case Study. <i>Computers</i> , 2021 , 10, 30	1.9	4
162	FPGA Speech Encryption Realization Based on Variable S-Box and Memristor Chaotic Circuit 2018 ,		4

161	Fractional-Order Filter Design 2018 , 357-382		4
160	FPGA Implementation of X- and Heart-shapes Controllable Multi-Scroll Attractors 2018,		4
159	FPGA Implementation of Reconfigurable CORDIC Algorithm and a Memristive Chaotic System With Transcendental Nonlinearities. <i>IEEE Transactions on Circuits and Systems I: Regular Papers</i> , 2022 , 1-8	3.9	4
158	Control and Synchronization of Fractional-Order Chaotic Systems. <i>Studies in Computational Intelligence</i> , 2017 , 325-355	0.8	3
157	The common-base differential amplifier and applications revisited. <i>Microelectronics Journal</i> , 2017 , 63, 8-19	1.8	3
156	Single transistor fractional-order filter using a multi-walled carbon nanotube device. <i>Analog Integrated Circuits and Signal Processing</i> , 2019 , 100, 215-219	1.2	3
155	Memristor Mathematical Models and Emulators. Studies in Systems, Decision and Control, 2015, 51-84	0.8	3
154	Second order bandstop and bandpass filters using transformers. <i>Microelectronics Journal</i> , 2015 , 46, 690	-6937	3
153	Active circuit model of low-frequency behavior in perovskite solar cells. <i>Organic Electronics</i> , 2020 , 85, 105804	3.5	3
152	New Trends on Modeling, Design, and Control of Chaotic Systems. <i>Mathematical Problems in Engineering</i> , 2017 , 2017, 1-3	1.1	3
151	Calculating output impedance in linear networks without source nulling or load disconnect: the instantaneous output impedance. <i>International Journal of Circuit Theory and Applications</i> , 2016 , 44, 98-1	g8	3
150	Fractional-Order Differentiators and Integrators with Reduced Circuit Complexity 2018,		3
149	FPGA implementation of fractional-order Chua's chaotic system 2018,		3
148	Fractional-Order Model of a Commercial Ear Simulator 2018 ,		3
147	Design of pseudo random keystream generator using fractals 2013 ,		3
146	Oscillator with tunable phase capability. <i>Electronics Letters</i> , 2017 , 53, 1516-1518	1.1	3
145	CMOS Realization of All-Positive Pinched Hysteresis Loops. <i>Complexity</i> , 2017 , 2017, 1-15	1.6	3
144	Current feedback operational amplifier (CFOA) based fractional order oscillators 2014,		3

143	Fractional Step Analog Filter Design. Lecture Notes in Electrical Engineering, 2013, 243-267	0.2	3
142	Utilizing LFSR and Feistel networks in image encryption 2013,		3
141	Ring oscillator structures with explicitly separated nonlinearity. <i>International Journal of Circuit Theory and Applications</i> , 2011 , 39, 1079-1086	2	3
140	Sinusoidal oscillators with lower gain requirements at higher frequencies based on an explicit tanh(x) nonlinearity. <i>International Journal of Circuit Theory and Applications</i> , 2010 , 38, 747-760	2	3
139	Explaining Hysteresis in Electronic Circuits. <i>International Journal of Electrical Engineering and Education</i> , 2006 , 43, 252-260	0.6	3
138	Research-oriented junior/senior design projects: an analog circuit design example. <i>IEEE Transactions on Education</i> , 2004 , 47, 93-99	2.1	3
137	MOS Realization of the Conjectured Simplest Chaotic Equation. <i>Circuits, Systems, and Signal Processing</i> , 2003 , 22, 277	2.2	3
136	A GENERIC MODEL FOR VOLTAGE-CONTROLLED SECOND-ORDER RC SINUSOIDAL OSCILLATORS. Journal of Circuits, Systems and Computers, 2005 , 14, 297-305	0.9	3
135	FPAA-Based Realization of Filters with Fractional Laplace Operators of Different Orders. <i>Fractal and Fractional</i> , 2021 , 5, 218	3	3
134	GENERIC RC REALIZATIONS OF CHUA'S CIRCUIT 2000 ,		3
133	Chaotic Clock Driven Cryptographic Chip: Towards a DPA Resistant AES Processor. <i>IEEE Transactions on Emerging Topics in Computing</i> , 2020 , 1-1	4.1	3
132	. IEEE Access, 2021 , 9, 145977-145987	3.5	3
131	Parallel random bitstreams from a single source of entropy based on nonthermal electrochemical microplasma. <i>Plasma Processes and Polymers</i> , 2020 , 17, 2000123	3.4	3
130	Chaotic Dynamics and FPGA Implementation of a Fractional-Order Chaotic System With Time Delay. <i>IEEE Open Journal of Circuits and Systems</i> , 2020 , 1, 255-262	1.7	3
129	Passive approximations of double-exponent fractional-order impedance functions. <i>International Journal of Circuit Theory and Applications</i> , 2021 , 49, 1274-1284	2	3
128	Extending the double-dispersion Cole-Cole, Cole-Davidson and Havriliak-Negami electrochemical impedance spectroscopy models. <i>European Biophysics Journal</i> , 2021 , 50, 915-926	1.9	3
127	2016,		3
126	Factors impacting accurate Cole-impedance extractions from magnitude-only measurements 2016,		3

125	Enhancing the improved Howland circuit. <i>International Journal of Circuit Theory and Applications</i> , 2019, 47, 532-541	3	3
124	Multifunction Fractional Inverse Filter Based on OTRA 2019 ,	3	3
123	Using Meta-heuristic Optimization to Extract Bio-impedance Parameters from an Oscillator Circuit 2019 ,	Ĵ	3
122	Analysis and Design of Fractional-order Low-pass Filter with Three Elements of Independent Orders 2019 ,	3	3
121	A Simple BJT Inverse Memristor Emulator and Its Application in Chaotic Oscillators 2019,	3	3
120	Fractional-Order Relaxation Oscillators Based on Op-Amp and OTRA 2018,	3	3
119	Incremental Grounded Voltage Controlled Memristor Emulator 2018,	3	3
118	A 28 GHz Q-Tunable Fully Differential Bandpass Filter in 65-nm CMOS Technology 2018 ,	3	3
117	Simple implementations of fractional-order driving-point impedances: Application to biological tissue models. <i>AEU - International Journal of Electronics and Communications</i> , 2021 , 137, 153784	3	3
116	FPGA Realizations of Chaotic Epidemic and Disease Models Including Covid-19. <i>IEEE Access</i> , 2021 , 9, 210855	2109	3
115	Applications of Fractional-Order Circuits. <i>Springer Briefs in Electrical and Computer Engineering</i> , 0.4	. 2	2
114	A generic impedance modeling technique. <i>AEU - International Journal of Electronics and Communications</i> , 2020 , 123, 153301	2	2
113	Switched-current fractional-order filter designs 2016 ,	2	2
112	On the Fractional Order Generalized Discrete Maps 2018 , 375-408	2	2
111	Chaotic Properties of Various Types of Hidden Attractors in Integer and Fractional Order Domains 2018 , 503-528	2	2
110	Cole-Cole Bio-Impedance Parameters Extraction From a Single Time-Domain Measurement 2019 ,	2	2
109	Speech Encryption on FPGA Using a Chaotic Generator and S-Box Table 2019 ,	2	2
108	Mapping of circuit variables into two-port network variables in basic amplifier structures: identifying new topologies. <i>International Journal of Circuit Theory and Applications</i> , 2014 , 42, 1203-1208 ²	2	2

107	Single and dual solutions of fractional order differential equations based on controlled Picard method with Simpson rulePeer review under responsibility of University of Bahrain. View all notes. <i>Journal of the Association of Arab Universities for Basic and Applied Sciences</i> , 2017 , 24, 247-253	2
106	Design of a wood tissue impedance emulator in monolithic form 2017 ,	2
105	Low pass filter design based on fractional power chebyshev polynomial 2015 ,	2
104	Review of the missing mechanical element: Memdamper 2015,	2
103	Clock-Driven Chaotic Pulse-Width Generators: An Overview and Demonstration of Power Supply Attack. <i>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering</i> , 2014 , 24, 1450079	2
102	Fractional order two port network oscillator with equal order 2014 ,	2
101	2011,	2
100	2D scroll grid attractors from pulse-excited nonautonomous circuits	2
99	LOW-VOLTAGE MOS CHAOTIC OSCILLATOR BASED ON THE NONLINEARITY OF Gm. <i>Journal of Circuits, Systems and Computers</i> , 2004 , 13, 101-120	2
98	A new method for the realization of non-autonomous chaotic oscillators	2
97	Chaotic oscillator configuration using a frequency dependent negative resistor	2
96	FPGA Implementation of Integer/Fractional Chaotic Systems. <i>Studies in Computational Intelligence</i> , o.8 2020 , 199-229	2
95	Two-Port Network Analysis of Equal Fractional-order Wireless Power Transfer Circuit 2020,	2
94	Pinched hysteresis loops in non-linear resonators. <i>IET Circuits, Devices and Systems</i> , 2021 , 15, 88-93 1.1	2
93	On chip 0.5 V 2 GHz four-output quadrature-phase oscillator. <i>AEU - International Journal of Electronics and Communications</i> , 2020 , 126, 153393	2
92	Low-Power Single-Transistor Voltage-Mode Third-Order All-pass Filter in 65-nm CMOS 2020 ,	2
91	Self-Reproducing Hidden Attractors in Fractional-Order Chaotic Systems Using Affine Transformations. <i>IEEE Open Journal of Circuits and Systems</i> , 2020 , 1, 243-254	2
90	Novel Double-Dispersion Models Based on Power-Law Filters. <i>Circuits, Systems, and Signal Processing</i> , 2021 , 40, 5799-5812	2

89	Improved method to determine supercapacitor metrics from highpass filter response 2016,		2
88	Determination of supercapacitor metrics using a magnitude-only method 2016,		2
87	N-digits Ternary Carry Lookahead Adder Design 2019 ,		2
86	On the Implementation of a Rotated Chaotic Lorenz System on FPGA 2019 ,		2
85	A Universal Fractional-Order Memelement Emulation Circuit 2019 ,		2
84	Banana Ripening and Corresponding Variations in Bio-Impedance and Glucose Levels 2019,		2
83	Tunable Fractional-Order Band-pass Filter of order 2 ₽019 ,		2
82	Minimum MOS Transistor Count Fractional-Order Voltage-Mode and Current-Mode Filters. <i>Technologies</i> , 2019 , 7, 85	2.4	2
81	Fractional-Order Oscillators Based on Double Op-Amp 2019 ,		2
80	A switched chaotic encryption scheme using multi-mode generalized modified transition map. <i>Multimedia Tools and Applications</i> , 2021 , 80, 5373-5402	2.5	2
79	On-the-Fly Parallel Processing IP-Core for Image Blur Detection, Compression, and Chaotic Encryption Based on FPGA. <i>IEEE Access</i> , 2021 , 9, 82726-82746	3.5	2
78	Electrochemical stability analysis of red phosphorus-based anode for lithium-ion batteries. <i>Electrochimica Acta</i> , 2021 , 395, 139149	6.7	2
77	Versatile Field-Programmable Analog Array Realizations of Power-Law Filters. <i>Electronics</i> (Switzerland), 2022 , 11, 692	2.6	2
76	Procedure for Designing Fractional-Order Filters. <i>Springer Briefs in Electrical and Computer Engineering</i> , 2017 , 13-39	0.4	1
75	Current-Mode Fractional-Order Filters. Springer Briefs in Electrical and Computer Engineering, 2017, 41-5	4 0.4	1
74	Emulation of Fractional-Order Capacitors (CPEs) and Inductors (FOIs). <i>Springer Briefs in Electrical and Computer Engineering</i> , 2017 , 65-86	0.4	1
73	Fractional-Order Mihalas liebur Neuron Model Implementation Using Current-Mirrors 2019,		1
72	Simple MOS Transistor-Based Realization of Fractional-Order Capacitors 2019 ,		1

71	Design and Implementation of a Bio-Impedance Analyzer Based on the Kramers-Kronig Transform 2018 ,		1
70	Supercapacitor Fractional-Order Model Discharging from Polynomial Time-Varying Currents 2018,		1
69	Two topologies of fractional-order oscillators based on CFOA and RC networks 2018,		1
68	Nonlinear Fractional Order Boundary-Value Problems With Multiple Solutions 2018, 37-74		1
67	Commercial supercapacitor parameter estimation from step voltage excitation. <i>International Journal of Circuit Theory and Applications</i> , 2019 , 47, 1705-1712	2	1
66	Log-Domain Implementation of Fractional-Order Element Emulators 2019,		1
65	Design of Fractional-Order Differentiator-Lowpass Filters for Extracting the R peaks in ECG Signals 2019 ,		1
64	Generalized chaotic maps and elementary functions between analysis and implementation 2015,		1
63	Elmore delay in the fractional order domain 2017,		1
62	Pulse-excited RC nonautonomous chaotic oscillator structures		1
62 61	Pulse-excited RC nonautonomous chaotic oscillator structures PULSE-EXCITED RC NONAUTONOMOUS CHAOTIC OSCILLATOR STRUCTURES. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2005, 15, 2257-2261	2	1
	PULSE-EXCITED RC NONAUTONOMOUS CHAOTIC OSCILLATOR STRUCTURES. International Journal	2	
61	PULSE-EXCITED RC NONAUTONOMOUS CHAOTIC OSCILLATOR STRUCTURES. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2005, 15, 2257-2261 Design Methodology for Autonomous Chaotic Oscillators. World Scientific Series on Nonlinear		
61 60	PULSE-EXCITED RC NONAUTONOMOUS CHAOTIC OSCILLATOR STRUCTURES. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2005, 15, 2257-2261 Design Methodology for Autonomous Chaotic Oscillators. World Scientific Series on Nonlinear Science, Series B, 2002, 23-50		1
61 60 59	PULSE-EXCITED RC NONAUTONOMOUS CHAOTIC OSCILLATOR STRUCTURES. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2005, 15, 2257-2261 Design Methodology for Autonomous Chaotic Oscillators. World Scientific Series on Nonlinear Science, Series B, 2002, 23-50 A collection of interdisciplinary applications of fractional-order circuits 2022, 35-69	0.3	1 1
61 60 59	PULSE-EXCITED RC NONAUTONOMOUS CHAOTIC OSCILLATOR STRUCTURES. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2005, 15, 2257-2261 Design Methodology for Autonomous Chaotic Oscillators. World Scientific Series on Nonlinear Science, Series B, 2002, 23-50 A collection of interdisciplinary applications of fractional-order circuits 2022, 35-69 FPGA REALIZATION OF COMPLEX LOGISTIC MAP FRACTAL BEHAVIOR. Fractals, Discrete fractional-order Caputo method to overcome trapping in local optima: Manta Ray Foraging	0.3 3.2	1 1 1
61 60 59 58	PULSE-EXCITED RC NONAUTONOMOUS CHAOTIC OSCILLATOR STRUCTURES. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2005, 15, 2257-2261 Design Methodology for Autonomous Chaotic Oscillators. World Scientific Series on Nonlinear Science, Series B, 2002, 23-50 A collection of interdisciplinary applications of fractional-order circuits 2022, 35-69 FPGA REALIZATION OF COMPLEX LOGISTIC MAP FRACTAL BEHAVIOR. Fractals, Discrete fractional-order Caputo method to overcome trapping in local optima: Manta Ray Foraging Optimizer as a case study. Expert Systems With Applications, 2022, 192, 116355 Self-Excited Attractors in Jerk Systems: Overview and Numerical Investigation of Chaos Production.	o.3 3.2 7.8	1 1 1 1 1

53	Simple Implementations of the Cole-Cole Models 2020,		1
52	Ultra-low-power compact single-transistor all-pass filter with tunable delay capability. <i>AEU -</i> International Journal of Electronics and Communications, 2021 , 132, 153645	2.8	1
51	Design of Low-Voltage FO-[PD] Controller for Motion Systems. <i>Journal of Low Power Electronics and Applications</i> , 2021 , 11, 26	1.7	1
50	A Comparative Study of Different Human Skin Impedance Models 2021,		1
49	Bio-Impedance Measurement and Applications 2019 , 1-14		1
48	Fractional Derivative Modeling of Free Convective Flow over a Vertical Plate with Stability Analysis 2019 ,		1
47	Third-order tunable-phase asymmetric cross-coupled oscillator. <i>IET Circuits, Devices and Systems</i> , 2019 , 13, 929-933	1.1	1
46	Fully Electronically Tunable Inverse Fractional-Order Filter Designs 2019,		1
45	All-Dynamic Synchronization of Rotating Fractional-Order Chaotic Systems 2019,		1
44	Fractional-order Nonminimum-phase Filter Design 2019 ,		1
43	OTA-C Implementation of Fractional-Order Lead/Lag Compensators 2019,		1
42	A Digital Hardware Implementation for A new Mixed-Order Nonlinear 3-D Chaotic System 2019 ,		1
41	A voltage tunable CMOS differential active resistor and its application. <i>International Journal of Circuit Theory and Applications</i> , 2019 , 47, 175-185	2	1
40	Programmable constant phase element realization with crossbar arrays. <i>Journal of Advanced Research</i> , 2021 , 29, 137-145	13	1
39	Memristor-CNTFET based Ternary Comparator unit 2018,		1
38	On a Class of Quadrature Phase Oscillators using Differential pairs 2018,		1
37	Synthesis of a Family of Differential Cross-coupled Oscillators and Design Application 2018,		1
36	An Automated Lightweight UVM Tool 2018 ,		1

35	Active emulation circuits of fractional-order memristive elements and its applications. <i>AEU - International Journal of Electronics and Communications</i> , 2021 , 138, 153855	2.8	1
34	Memristive Bio-Impedance Modeling of Fruits and Vegetables. <i>IEEE Access</i> , 2021 , 9, 21498-21506	3.5	1
33	On The Equivalent Impedance of Two-Impedance Self-Similar Ladder Networks. <i>IEEE Transactions on Circuits and Systems II: Express Briefs</i> , 2021 , 1-1	3.5	1
32	Electrical Impedance Spectroscopy in Plant Biology. Sustainable Agriculture Reviews, 2021, 395-416	1.3	1
31	Extended Instantaneous Spectral Analysis (E-ISA) for Advanced Signal Processing. <i>IEEE Transactions on Instrumentation and Measurement</i> , 2022 , 1-1	5.2	1
30	Electronically Controlled Power-Law Filters Realizations. Fractal and Fractional, 2022, 6, 111	3	1
29	Plant stem tissue modeling and parameter identification using metaheuristic optimization algorithms <i>Scientific Reports</i> , 2022 , 12, 3992	4.9	1
28	The minimax approach for a class of variable order fractional differential equation. <i>Mathematical Methods in the Applied Sciences</i> , 2019 , 42, 2734-2745	2.3	O
27	ON THE NONLINEAR MODELING OF RING OSCILLATORS. <i>Journal of Circuits, Systems and Computers</i> , 2009 , 18, 681-696	0.9	0
26	A survey on memristor active emulation circuits in the fractional-order domain 2022 , 375-410		
	A survey of memission active emutation circuits in the fractional-order domain 2022, 373-410		O
25	MOS realizations of fractional-order elements 2022 , 1-33		0
		4.9	
25	MOS realizations of fractional-order elements 2022 , 1-33 Atmospheric pressure air microplasma current time series for true random bit generation. <i>Scientific</i>		0
25 24	MOS realizations of fractional-order elements 2022 , 1-33 Atmospheric pressure air microplasma current time series for true random bit generation. <i>Scientific Reports</i> , 2020 , 10, 20971 A Modified Differentiator Circuit for Extracting Cole-Impedance Model Parameters Using		0
25 24 23	MOS realizations of fractional-order elements 2022, 1-33 Atmospheric pressure air microplasma current time series for true random bit generation. <i>Scientific Reports</i> , 2020, 10, 20971 A Modified Differentiator Circuit for Extracting Cole-Impedance Model Parameters Using Meta-heuristic Optimization Algorithms. <i>Arabian Journal for Science and Engineering</i> , 2021, 46, 9945-995 Delay-Tunable Compact RC-Only All-Pass Filter. <i>IEEE Microwave and Wireless Components Letters</i> ,	5 1 .5	0 0
25 24 23 22	MOS realizations of fractional-order elements 2022, 1-33 Atmospheric pressure air microplasma current time series for true random bit generation. <i>Scientific Reports</i> , 2020, 10, 20971 A Modified Differentiator Circuit for Extracting Cole-Impedance Model Parameters Using Meta-heuristic Optimization Algorithms. <i>Arabian Journal for Science and Engineering</i> , 2021, 46, 9945-995 Delay-Tunable Compact RC-Only All-Pass Filter. <i>IEEE Microwave and Wireless Components Letters</i> , 2021, 31, 461-464 Time-Frequency Design of a Multi-Sine Excitation With Random Phase and Controllable Amplitude	2.6	o o o
25 24 23 22 21	MOS realizations of fractional-order elements 2022, 1-33 Atmospheric pressure air microplasma current time series for true random bit generation. <i>Scientific Reports</i> , 2020, 10, 20971 A Modified Differentiator Circuit for Extracting Cole-Impedance Model Parameters Using Meta-heuristic Optimization Algorithms. <i>Arabian Journal for Science and Engineering</i> , 2021, 46, 9945-995 Delay-Tunable Compact RC-Only All-Pass Filter. <i>IEEE Microwave and Wireless Components Letters</i> , 2021, 31, 461-464 Time-Frequency Design of a Multi-Sine Excitation With Random Phase and Controllable Amplitude for (Bio) Impedance Measurements. <i>IEEE Access</i> , 2022, 10, 31641-31648 Modified fractional-order model for biomass degradation in an up-flow anaerobic sludge blanket reactor at Zenein Wastewater Treatment Plant <i>Environmental Science and Pollution Research</i> , 2022	2.6	OOOOO

1

17 In-Direct Impedance Measurement: Design and Implementation 2019, 51-80 16 Meminductor: Modeling, Analysis, and Emulators. Studies in Systems, Decision and Control, 2015, 207-2270.8 15 Memristor-Based Relaxation Oscillator Circuits. Studies in Systems, Decision and Control, 2015, 85-119 0.8 14 Wide-range grounded non-linear transconductor and its application as a frequency doubler. 0.6 13 International Journal of Electronics Letters, 2018, 6, 214-219 Center pulse width modulation implementation based on memristor. AEU - International Journal of 2.8 12 Electronics and Communications, 2019, 111, 152843 Chaos-Fractals Theories and Applications. Mathematical Problems in Engineering, 2014, 2014, 1-1 11 1.1 A NON-CONSERVATIVE MODEL OF SECOND-ORDER RC SINUSOIDAL OSCILLATORS. Journal of 10 0.9 Circuits, Systems and Computers, 2010, 19, 871-877 Monitoring of global cerebral ischemia using instantaneous phase variation plots. Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in 0.9 9 Medicine and Biology Society Annual International Conference, 2008, 2008, 4182-5 A Study of Equilibrium Points and Stability in a Nonlinear Model of a Phase-Compensated 2.2 Operational Amplifier. Circuits, Systems, and Signal Processing, 2008, 27, 781-798 Fractional-order oscillators based on a single Op-Amp 2022, 411-439 Second-order cascode-based filters. The Integration VLSI Journal, 2022, 84, 111-121 1.4 Fractional-Order Integrated Circuits in Control Applications and Biological Modeling 2018, 163-204 5 Analog Circuit Design Using Symbolic Math Toolboxes: Demonstrative Examples. IEEE Transactions 2.6 on Very Large Scale Integration (VLSI) Systems, 2021, 1-11 Generalizing the Warburg Impedance to a Warburg Impedance Matrix. AEU - International Journal of 2.8 Electronics and Communications, **2022**, 154202 Time-Domain and Frequency-Domain Mappings of Voltage-to-Charge and Charge-to-Voltage in 3.5 Capacitive Devices. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 1-1 Approximation of Fractional-Order Controllers for Mechatronic Applications 2022, 131-147

In-Direct Impedance Measurement: Phase Extraction Algorithm 2019, 33-49