Kwang-hyun Cho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4297700/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CatSperÎ ² , a Novel Transmembrane Protein in the CatSper Channel Complex. Journal of Biological Chemistry, 2007, 282, 18945-18952.	3.4	148
2	A Novel, Single, Transmembrane Protein CATSPERG Is Associated with CATSPER1 Channel Protein1. Biology of Reproduction, 2009, 81, 539-544.	2.7	121
3	Serotonin inhibits the induction of NMDA receptor-dependent long-term potentiation in the rat primary visual cortex. Brain Research, 2006, 1103, 49-55.	2.2	37
4	Two types of ion channel formation of tolaasin, aPseudomonaspeptide toxin. FEMS Microbiology Letters, 2003, 221, 221-226.	1.8	33
5	Age-Dependent Decline in Supragranular Long-Term Synaptic Plasticity by Increased Inhibition During the Critical Period in the Rat Primary Visual Cortex. Journal of Neurophysiology, 2009, 101, 269-275.	1.8	21
6	Subtype-Specific Dendritic Ca ²⁺ Dynamics of Inhibitory Interneurons in the Rat Visual Cortex. Journal of Neurophysiology, 2010, 104, 840-853.	1.8	20
7	Effects of Serotonin on the Induction of Long-term Depression in the Rat Visual Cortex. Korean Journal of Physiology and Pharmacology, 2010, 14, 337.	1.2	18
8	Purification of a Pore-forming Peptide Toxin, Tolaasin, Produced by Pseudomonas tolaasii 6264. BMB Reports, 2007, 40, 113-118.	2.4	17
9	Developmental Switch of the Serotonergic Role in the Induction of Synaptic Long-term Potentiation in the Rat Visual Cortex. Korean Journal of Physiology and Pharmacology, 2012, 16, 65.	1.2	16
10	Layer-specific serotonergic facilitation of IPSC in layer 2/3 pyramidal neurons of the visual cortex. Journal of Neurophysiology, 2012, 107, 407-416.	1.8	16
11	Differential Cholinergic Modulation of Ca ²⁺ Transients Evoked by Backpropagating Action Potentials in Apical and Basal Dendrites of Cortical Pyramidal Neurons. Journal of Neurophysiology, 2008, 99, 2833-2843.	1.8	16
12	The Development of Phasic and Tonic Inhibition in the Rat Visual Cortex. Korean Journal of Physiology and Pharmacology, 2010, 14, 399.	1.2	12
13	Temperatureâ€dependent hemolytic activity of membrane poreâ€forming peptide toxin, tolaasin. Journal of Peptide Science, 2010, 16, 85-90.	1.4	9
14	Cholinergic Induction of Input-Specific Late-Phase LTP via Localized Ca2+ Release in the Visual Cortex. Journal of Neuroscience, 2012, 32, 4520-4530.	3.6	7
15	Layer- and cell-type-specific tonic GABAergic inhibition of pyramidal neurons in the rat visual cortex. Pflugers Archiv European Journal of Physiology, 2013, 465, 1797-1810.	2.8	7
16	Spatial profile of back-propagating action potential-evoked Ca2+ transients in basal dendrites. NeuroReport, 2006, 17, 131-134.	1.2	5
17	Layer-specific involvement of endocannabinoid signaling in muscarinic-induced long-term depression in layer 2/3 pyramidal neurons of rat visual cortex. Brain Research, 2019, 1712, 124-131.	2.2	5
18	Open channel block of Kv1.4 potassium channels by aripiprazole. Korean Journal of Physiology and Pharmacology, 2020, 24, 545-553.	1.2	5

#	Article	IF	CITATIONS
19	Layer-specific cholinergic modulation of synaptic transmission in layer 2/3 pyramidal neurons of rat visual cortex. Korean Journal of Physiology and Pharmacology, 2019, 23, 317.	1.2	2
20	Inhibition of microsomal ATPases by high concentration of Mg2+ in tracheal epithelial cells. Life Sciences, 2001, 69, 2875-2886.	4.3	1
21	Layer-specific serotonergic induction of long-term depression in the prefrontal cortex of rats. Korean Journal of Physiology and Pharmacology, 2020, 24, 517-527.	1.2	1