
Jaime E Pineda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4297580/publications.pdf Version: 2024-02-01

IAIME E DINEDA

#	Article	IF	CITATIONS
1	Structural Analysis of Molecular Clouds: Dendrograms. Astrophysical Journal, 2008, 679, 1338-1351.	1.6	382
2	Global collapse of molecular clouds as a formation mechanism for the most massive stars. Astronomy and Astrophysics, 2013, 555, A112.	2.1	259
3	CO Isotopologues in the Perseus Molecular Cloud Complex: the <i>X</i> â€factor and Regional Variations. Astrophysical Journal, 2008, 679, 481-496.	1.6	236
4	The COMPLETE Survey of Star-Forming Regions: Phase I Data. Astronomical Journal, 2006, 131, 2921-2933.	1.9	227
5	An Ammonia Spectral Atlas of Dense Cores in Perseus. Astrophysical Journal, Supplement Series, 2008, 175, 509-521.	3.0	172
6	THE "TRUE―COLUMN DENSITY DISTRIBUTION IN STAR-FORMING MOLECULAR CLOUDS. Astrophysical Journal, 2009, 692, 91-103.	1.6	163
7	DIRECT OBSERVATION OF A SHARP TRANSITION TO COHERENCE IN DENSE CORES. Astrophysical Journal Letters, 2010, 712, L116-L121.	3.0	149
8	SMA OBSERVATIONS OF CLASS 0 PROTOSTARS: A HIGH ANGULAR RESOLUTION SURVEY OF PROTOSTELLAR BINARY SYSTEMS. Astrophysical Journal, 2013, 768, 110.	1.6	123
9	THE COMPLETE SURVEY OF OUTFLOWS IN PERSEUS. Astrophysical Journal, 2010, 715, 1170-1190.	1.6	121
10	A role for self-gravity at multiple length scales in the process of star formation. Nature, 2009, 457, 63-66.	13.7	118
11	Seeds Of Life In Space (SOLIS): The Organic Composition Diversity at 300–1000 au Scale in Solar-type Star-forming Regions [*] . Astrophysical Journal, 2017, 850, 176.	1.6	116
12	The Green Bank Ammonia Survey: First Results of NH ₃ Mapping ofÂthe Gould Belt. Astrophysical Journal, 2017, 843, 63.	1.6	115
13	The JCMT Gould Belt Survey: first results from the SCUBA-2 observations of the Ophiuchus molecular cloud and a virial analysis of its prestellar core population. Monthly Notices of the Royal Astronomical Society, 2015, 450, 1094-1122.	1.6	114
14	Four annular structures in a protostellar disk less than 500,000 years old. Nature, 2020, 586, 228-231.	13.7	109
15	THE PERILS OF CLUMPFIND: THE MASS SPECTRUM OF SUBSTRUCTURES IN MOLECULAR CLOUDS. Astrophysical Journal, 2009, 699, L134-L138.	1.6	100
16	Seeds of Life in Space (SOLIS). Astronomy and Astrophysics, 2017, 605, L3.	2.1	98
17	The first ALMA view of IRASÂ16293-2422. Astronomy and Astrophysics, 2012, 544, L7.	2.1	96
18	The formation of a quadruple star system with wide separation. Nature, 2015, 518, 213-215.	13.7	93

#	Article	IF	CITATIONS
19	THE 2014 ALMA LONG BASELINE CAMPAIGN: AN OVERVIEW. Astrophysical Journal Letters, 2015, 808, L1.	3.0	90
20	THE ENIGMATIC CORE L1451-mm: A FIRST HYDROSTATIC CORE? OR A HIDDEN VeLLO?. Astrophysical Journal, 2011, 743, 201.	1.6	87
21	FROM THE CONVERGENCE OF FILAMENTS TO DISK-OUTFLOW ACCRETION: MASSIVE STAR FORMATION IN W33A. Astrophysical Journal, 2010, 725, 17-28.	1.6	85
22	A BUBBLING NEARBY MOLECULAR CLOUD: COMPLETE SHELLS IN PERSEUS. Astrophysical Journal, 2011, 742, 105.	1.6	85
23	A protostellar system fed by a streamer of 10,500 au length. Nature Astronomy, 2020, 4, 1158-1163.	4.2	77
24	Distributed Star Formation throughout the Galactic Center Cloud Sgr B2. Astrophysical Journal, 2018, 853, 171.	1.6	74
25	RESOLVED IMAGES OF THE PROTOPLANETARY DISK AROUND HD 100546 WITH ALMA. Astrophysical Journal Letters, 2014, 788, L34.	3.0	71
26	The CARMA-NRO Orion Survey. Astrophysical Journal, Supplement Series, 2018, 236, 25.	3.0	64
27	DENSE CORES IN PERSEUS: THE INFLUENCE OF STELLAR CONTENT AND CLUSTER ENVIRONMENT. Astrophysical Journal, 2009, 696, 298-319.	1.6	63
28	MUSCLE W49: A MULTI-SCALE CONTINUUM AND LINE EXPLORATION OF THE MOST LUMINOUS STAR FORMATION REGION IN THE MILKY WAY. I. DATA AND THE MASS STRUCTURE OF THE GIANT MOLECULAR CLOUD. Astrophysical Journal, 2013, 779, 121.	1.6	63
29	THE ANGULAR MOMENTUM OF MACNETIZED MOLECULAR CLOUD CORES: A TWO-DIMENSIONAL-THREE-DIMENSIONAL COMPARISON. Astrophysical Journal, 2010, 723, 425-439.	1.6	61
30	MISALIGNMENT OF OUTFLOW AXES IN THE PROTO-MULTIPLE SYSTEMS IN PERSEUS. Astrophysical Journal Letters, 2016, 820, L2.	3.0	60
31	The Green Bank Ammonia Survey: Dense Cores under Pressure in Orion A. Astrophysical Journal, 2017, 846, 144.	1.6	60
32	STAR FORMATION IN THE TAURUS FILAMENT L 1495: FROM DENSE CORES TO STARS. Astrophysical Journal, 2010, 725, 1327-1336.	1.6	58
33	EXPANDED VERY LARGE ARRAY OBSERVATIONS OF THE BARNARD 5 STAR-FORMING CORE: EMBEDDED FILAMENTS REVEALED. Astrophysical Journal Letters, 2011, 739, L2.	3.0	57
34	Seeds of Life in Space (SOLIS). Astronomy and Astrophysics, 2017, 605, A57.	2.1	54
35	High-resolution ALMA Observations of HD 100546: Asymmetric Circumstellar Ring and Circumplanetary Disk Upper Limits. Astrophysical Journal, 2019, 871, 48.	1.6	54
36	The initial conditions of stellar protocluster formation – II. A catalogue of starless and protostellar clumps embedded in IRDCs in the Galactic longitude range 15° ≤â‰ឆ5°. Monthly Notices of the Royal Astronomical Society, 2015, 451, 3089-3106.	1.6	52

#	Article	IF	CITATIONS
37	The JCMT Gould Belt Survey: a quantitative comparison between SCUBA-2 data reduction methods. Monthly Notices of the Royal Astronomical Society, 2015, 454, 2557-2579.	1.6	47
38	Investigating the structure and fragmentation of a highly filamentary IRDC. Monthly Notices of the Royal Astronomical Society, 2016, 463, 146-169.	1.6	47
39	Alignment between Protostellar Outflows and Filamentary Structure. Astrophysical Journal, 2017, 846, 16.	1.6	47
40	Droplets. I. Pressure-dominated Coherent Structures in L1688 and B18. Astrophysical Journal, 2019, 877, 93.	1.6	46
41	REVEALING H ₂ D ⁺ DEPLETION AND COMPACT STRUCTURE IN STARLESS AND PROTOSTELLAR CORES WITH ALMA. Astrophysical Journal, 2014, 797, 27.	1.6	45
42	THE WATER ABUNDANCE OF THE DIRECTLY IMAGED SUBSTELLAR COMPANION κ AND ♭ RETRIEVED FROM A NEAR INFRARED SPECTRUM. Astrophysical Journal, 2016, 823, 14.	1.6	45
43	The CARMA-NRO Orion Survey. Astronomy and Astrophysics, 2019, 623, A142.	2.1	45
44	AN ALMA SEARCH FOR SUBSTRUCTURE, FRAGMENTATION, AND HIDDEN PROTOSTARS IN STARLESS CORES IN CHAMAELEON I. Astrophysical Journal, 2016, 823, 160.	1.6	44
45	The Central 1000 au of a Pre-stellar Core Revealed with ALMA. I. 1.3 mm Continuum Observations. Astrophysical Journal, 2019, 874, 89.	1.6	43
46	The JCMT Plane Survey: early results from the â""Â=Â30° field. Monthly Notices of the Royal Astronomical Society, 2015, 453, 4265-4278.	1.6	42
47	Massive 70 μm quiet clumps – II. Non-thermal motions driven by gravity in massive star formation?. Monthly Notices of the Royal Astronomical Society, 2018, 473, 4975-4985.	1.6	41
48	Hot Corinos Chemical Diversity: Myth or Reality?. Astrophysical Journal Letters, 2020, 896, L3.	3.0	41
49	THE DYNAMICS OF DENSE CORES IN THE PERSEUS MOLECULAR CLOUD. II. THE RELATIONSHIP BETWEEN DENSE CORES AND THE CLOUD. Astrophysical Journal, 2010, 723, 457-475.	1.6	40
50	THE JCMT GOULD BELT SURVEY: EVIDENCE FOR DUST GRAIN EVOLUTION IN PERSEUS STAR-FORMING CLUMPS. Astrophysical Journal, 2016, 826, 95.	1.6	40
51	Unveiling the early-stage anatomy of a protocluster hub with ALMA. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 464, L31-L35.	1.2	40
52	SOLIS IV. Hydrocarbons in the OMC-2 FIR4 Region, a Probe of Energetic Particle Irradiation of the Region ^{â^—} . Astrophysical Journal, 2018, 859, 136.	1.6	39
53	The JCMT Gould Belt Survey: a first look at Southern Orion A with SCUBA-2. Monthly Notices of the Royal Astronomical Society, 2016, 461, 4022-4048.	1.6	38
54	CLOUD STRUCTURE OF GALACTIC OB CLUSTER-FORMING REGIONS FROM COMBINING GROUND- AND SPACE-BASED BOLOMETRIC OBSERVATIONS. Astrophysical Journal, 2016, 828, 32.	1.6	38

#	Article	IF	CITATIONS
55	ALMA chemical survey of disk-outflow sources in Taurus (ALMA-DOT). Astronomy and Astrophysics, 2022, 658, A104.	2.1	37
56	Deuteration of ammonia in the starless core Ophiuchus/H-MM1. Astronomy and Astrophysics, 2017, 600, A61.	2.1	36
57	Dense Gas Kinematics and a Narrow Filament in the Orion A OMC1 Region Using NH ₃ . Astrophysical Journal, 2018, 861, 77.	1.6	36
58	DIRECT DETECTION OF PRECURSORS OF GAS GIANTS FORMED BY GRAVITATIONAL INSTABILITY WITH THE ATACAMA LARGE MILLIMETER/SUBMILLIMETER ARRAY. Astrophysical Journal Letters, 2016, 823, L36.	3.0	35
59	MASS ASSEMBLY OF STELLAR SYSTEMS AND THEIR EVOLUTION WITH THE SMA (MASSES). MULTIPLICITY AND THE PHYSICAL ENVIRONMENT IN L1448N. Astrophysical Journal, 2015, 814, 114.	1.6	34
60	The Central 1000 au of a Prestellar Core Revealed with ALMA. II. Almost Complete Freeze-out. Astrophysical Journal, 2022, 929, 13.	1.6	34
61	Orbital and Mass Constraints of the Young Binary System IRAS 16293-2422 A. Astrophysical Journal, 2020, 897, 59.	1.6	33
62	ALMA Observations of Starless Core Substructure in Ophiuchus. Astrophysical Journal, 2017, 838, 114.	1.6	32
63	Mapping deuterated methanol toward L1544. Astronomy and Astrophysics, 2019, 622, A141.	2.1	32
64	THE JCMT GOULD BELT SURVEY: A FIRST LOOK AT DENSE CORES IN ORION B. Astrophysical Journal, 2016, 817, 167.	1.6	31
65	The JCMT and <i>Herschel</i> Gould Belt Surveys: a comparison of SCUBA-2 and <i>Herschel</i> data of dense cores in the Taurus dark cloud L1495. Monthly Notices of the Royal Astronomical Society, 2016, 463, 1008-1025.	1.6	31
66	Velocity-coherent Filaments in NGC 1333: Evidence for Accretion Flow?. Astrophysical Journal, 2020, 891, 84.	1.6	31
67	Evidence for grain growth in molecular clouds: A Bayesian examination of the extinction law in Perseus. Monthly Notices of the Royal Astronomical Society, 2013, 428, 1606-1622.	1.6	30
68	Mass Assembly of Stellar Systems and Their Evolution with the SMA (MASSES)—1.3 mm Subcompact Data Release. Astrophysical Journal, Supplement Series, 2018, 237, 22.	3.0	29
69	Dust opacity variations in the pre-stellar core L1544. Astronomy and Astrophysics, 2019, 623, A118.	2.1	29
70	Seeds of Life in Space (SOLIS). III. Zooming Into the Methanol Peak of the Prestellar Core L1544*. Astrophysical Journal, 2018, 855, 112.	1.6	28
71	The Specific Angular Momentum Radial Profile in Dense Cores: Improved Initial Conditions for Disk Formation. Astrophysical Journal, 2019, 882, 103.	1.6	28
72	FAUST I. The hot corino at the heart of the prototypical Class I protostar L1551 IRS5. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 498, L87-L92.	1.2	27

#	Article	IF	CITATIONS
73	The JCMT Gould Belt Survey: SCUBA-2 observations of circumstellar discs in LÂ1495. Monthly Notices of the Royal Astronomical Society, 2015, 449, 2472-2488.	1.6	26
74	Kinematics of dense gas in the L1495 filament. Astronomy and Astrophysics, 2018, 617, A27.	2.1	26
75	The JCMT Gould Belt Survey: evidence for radiative heating in Serpens MWC 297 and its influence on local star formation. Monthly Notices of the Royal Astronomical Society, 2015, 448, 1551-1573.	1.6	25
76	Revealing the dust grain size in the inner envelope of the Class I protostar Per-emb-50. Astronomy and Astrophysics, 2019, 623, A147.	2.1	25
77	Temperature structure and kinematics of the IRDC G035.39–00.33. Astronomy and Astrophysics, 2017, 606, A133.	2.1	24
78	Gas phase Elemental abundances in Molecular cloudS (GEMS). Astronomy and Astrophysics, 2021, 648, A120.	2.1	24
79	A spider-like outflow in Barnard 5 - IRS 1: the transition from a collimated jet to a wide-angle outflow?. Monthly Notices of the Royal Astronomical Society, 2014, 441, 3696-3702.	1.6	23
80	The JCMT Gould Belt Survey: constraints on prestellar core properties in Orion A North. Monthly Notices of the Royal Astronomical Society, 2015, 449, 1769-1781.	1.6	23
81	Pyspeckit: A Spectroscopic Analysis and Plotting Package. Astronomical Journal, 2022, 163, 291.	1.9	23
82	Seeds of Life in Space (SOLIS). Astronomy and Astrophysics, 2020, 640, A75.	2.1	22
83	Seeds of Life in Space (SOLIS). Astronomy and Astrophysics, 2020, 637, A63.	2.1	22
84	THE JCMT GOULD BELT SURVEY: DENSE CORE CLUSTERS IN ORION B. Astrophysical Journal, 2016, 821, 98.	1.6	21
85	CHIMPS2: survey description and 12CO emission in the Galactic Centre. Monthly Notices of the Royal Astronomical Society, 2020, 498, 5936-5951.	1.6	21
86	The JCMT Gould Belt Survey: A First Look at IC 5146. Astrophysical Journal, 2017, 836, 132.	1.6	20
87	The JCMT Gould Belt Survey: first results from SCUBA-2 observations of the Cepheus Flare region. Monthly Notices of the Royal Astronomical Society, 2017, 464, 4255-4281.	1.6	20
88	Subsonic islands within a high-mass star-forming infrared dark cloud. Astronomy and Astrophysics, 2018, 611, L3.	2.1	20
89	Minimal HCN emission from molecular clouds in M33. Monthly Notices of the Royal Astronomical Society, 2011, 415, 1977-1984.	1.6	19
90	FAUST. II. Discovery of a Secondary Outflow in IRAS 15398â^'3359: Variability in Outflow Direction during the Earliest Stage of Star Formation?. Astrophysical Journal, 2021, 910, 11.	1.6	19

Jaime E Pineda

#	Article	IF	CITATIONS
91	Search for grain growth toward the center of L1544. Astronomy and Astrophysics, 2017, 606, A142.	2.1	18
92	ALMA Detections of the Youngest Protostars in Ophiuchus. Astrophysical Journal, 2018, 869, 158.	1.6	18
93	Mass Assembly of Stellar Systems and Their Evolution with the SMA (MASSES)—Full Data Release. Astrophysical Journal, Supplement Series, 2019, 245, 21.	3.0	18
94	Efficient Methanol Production on the Dark Side of a Prestellar Core. Astrophysical Journal, 2020, 895, 101.	1.6	17
95	The Green Bank Ammonia Survey: Observations of Hierarchical Dense Gas Structures in Cepheus-L1251. Astrophysical Journal, 2017, 850, 3.	1.6	16
96	The ALMA view of W33A: a spiral filament feeding the candidate disc in MM1-Main. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 467, L120-L124.	1.2	16
97	ALMA–IRDC: dense gas mass distribution from cloud to core scales. Monthly Notices of the Royal Astronomical Society, 2021, 503, 4601-4626.	1.6	16
98	<i>Hyper</i> : Hybrid photometry and extraction routine. Astronomy and Astrophysics, 2015, 574, A119.	2.1	16
99	Investigating the complex velocity structures within dense molecular cloud cores with GBT-Argus. Monthly Notices of the Royal Astronomical Society, 2019, 490, 527-539.	1.6	15
100	The Green Bank Ammonia Survey: A Virial Analysis of Gould Belt Clouds in Data Release 1. Astrophysical Journal, 2019, 874, 147.	1.6	15
101	The Core Mass Function in the Orion Nebula Cluster Region: What Determines the Final Stellar Masses?. Astrophysical Journal Letters, 2021, 910, L6.	3.0	15
102	Kinematics of a Young Low-mass Star-forming Core: Understanding the Evolutionary State of the First-core Candidate L1451-mm. Astrophysical Journal, 2017, 838, 60.	1.6	15
103	Distribution of methanol and cyclopropenylidene around starless cores. Astronomy and Astrophysics, 2020, 643, A60.	2.1	15
104	An Interferometric View of H-MM1. I. Direct Observation of NH ₃ Depletion. Astronomical Journal, 2022, 163, 294.	1.9	15
105	Tightening the belt: Constraining the mass and evolution in SDC335. Astronomy and Astrophysics, 2015, 577, A30.	2.1	14
106	Multicomponent Kinematics in a Massive Filamentary Infrared Dark Cloud. Astrophysical Journal, 2019, 872, 30.	1.6	14
107	The JCMT Gould Belt Survey: evidence for radiative heating and contamination in the W40 complex. Monthly Notices of the Royal Astronomical Society, 2016, 460, 4150-4175.	1.6	13
108	ALMA observations of envelopes around first hydrostatic core candidates. Monthly Notices of the Royal Astronomical Society, 2020, 499, 4394-4417.	1.6	13

#	Article	IF	CITATIONS
109	Dissecting the Supercritical Filaments Embedded in the 0.5 pc Subsonic Region of Barnard 5. Astrophysical Journal, 2021, 909, 60.	1.6	13
110	Neutral versus Ion Line Widths in Barnard 5: Evidence for Penetration by Magnetohydrodynamic Waves. Astrophysical Journal, 2021, 912, 7.	1.6	13
111	Ubiquitous NH ₃ supersonic component in L1688 coherent cores. Astronomy and Astrophysics, 2020, 640, L6.	2.1	13
112	Droplets. II. Internal Velocity Structures and Potential Rotational Motions in Pressure-dominated Coherent Structures. Astrophysical Journal, 2019, 886, 119.	1.6	13
113	Are Massive Dense Clumps Truly Subvirial? A New Analysis Using Gould Belt Ammonia Data. Astrophysical Journal, 2021, 922, 87.	1.6	13
114	PHYSICAL AND CHEMICAL CHARACTERISTICS OF L1689-SMM16, AN OSCILLATING PRESTELLAR CORE IN OPHIUCHUS. Astrophysical Journal, 2014, 790, 129.	1.6	12
115	CONTRACTION SIGNATURES TOWARD DENSE CORES IN THE PERSEUS MOLECULAR CLOUD. Astrophysical Journal, 2016, 819, 143.	1.6	12
116	The NH ₂ D hyperfine structure revealed by astrophysical observations. Astronomy and Astrophysics, 2016, 586, L4.	2.1	12
117	Continuity of accretion from clumps to Class 0 high-mass protostars in SDC335. Astronomy and Astrophysics, 2021, 645, A142.	2.1	12
118	Magnetic Field Structure of Dense Cores Using Spectroscopic Methods. Astrophysical Journal, 2019, 872, 207.	1.6	11
119	The GRAVITY young stellar object survey. Astronomy and Astrophysics, 2021, 654, A97.	2.1	11
120	A Turbulent Origin for the Complex Envelope Kinematics in the Young Low-mass Core Per-bolo 58. Astrophysical Journal, 2017, 849, 89.	1.6	10
121	The Green Bank Ammonia Survey: Unveiling the Dynamics of the Barnard 59 Star-forming Clump. Astrophysical Journal, 2017, 850, 202.	1.6	10
122	Spokes cluster: The search for the quiescent gas. Astronomy and Astrophysics, 2013, 555, A106.	2.1	9
123	Relative alignment between dense molecular cores and ambient magnetic field: the synergy of numerical models and observations. Monthly Notices of the Royal Astronomical Society, 2020, 494, 1971-1987.	1.6	9
124	Probabilistic Detection of Spectral Line Components. Astrophysical Journal Letters, 2020, 892, L32.	3.0	9
125	Transition from coherent cores to surrounding cloud in L1688. Astronomy and Astrophysics, 2021, 648, A114.	2.1	9
126	A MULTIWAVELENGTH STUDY OF YOUNG MASSIVE STAR-FORMING REGIONS. III. MID-INFRARED EMISSION. Astrophysical Journal, 2009, 698, 488-501.	1.6	9

8

#	Article	IF	CITATIONS
127	A train of shocks at 3000-au scale? Exploring the clash of an expanding bubble into the NGC 1333 IRAS 4 region. SOLIS XIV. Monthly Notices of the Royal Astronomical Society, 2022, 512, 5214-5227.	1.6	8
128	The JCMT Gould Belt Survey: A First Look at the Auriga–California Molecular Cloud with SCUBA-2. Astrophysical Journal, 2018, 852, 73.	1.6	7
129	Misaligned Rotations of the Envelope, Outflow, and Disks in the Multiple Protostellar System of VLA 1623–2417: FAUST. III. Astrophysical Journal, 2022, 927, 54.	1.6	7
130	Deuteration in infrared dark clouds. Monthly Notices of the Royal Astronomical Society, 2016, 455, 806-819.	1.6	6
131	The CARMA-NRO Orion Survey: Core Emergence and Kinematics in the Orion A Cloud. Astrophysical Journal, 2019, 882, 45.	1.6	6
132	ALMA–IRDC – II. First high-angular resolution measurements of the 14N/15N ratio in a large sample of infrared-dark cloud cores. Monthly Notices of the Royal Astronomical Society, 2021, 503, 4320-4335.	1.6	6
133	VLA and NOEMA Views of Bok Globule CB 17: The Starless Nature of a Proposed First Hydrostatic Core Candidate. Astrophysical Journal, 2021, 923, 231.	1.6	6
134	3He: Does the problem persist?. Monthly Notices of the Royal Astronomical Society, 2013, 432, 793-798.	1.6	4
135	Very Large Array Ammonia Observations of the HH 111/HH 121 Protostellar System: A Detection of a New Source with a Peculiar Chemistry. Astrophysical Journal, 2017, 849, 68.	1.6	4
136	G305.136+0.068: A MASSIVE AND DENSE COLD CORE IN AN EARLY STAGE OF EVOLUTION. Astrophysical Journal, 2015, 799, 75.	1.6	3
137	The CARMA-NRO Orion Survey—Data Release. Research Notes of the AAS, 2021, 5, 55.	0.3	2
138	Deuterium Fractionation in the Oph-H-MM1 Dense Core of the L1688 Low Mass Star-Forming Region. Astronomy Reports, 2020, 64, 637-640.	0.2	1
139	Molecules in space: The analysis of the protostellar clump Barnard 59. AIP Conference Proceedings, 2018, , .	0.3	0