Marco Dorigo

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4297036/marco-dorigo-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

259 papers

34,663 citations

60 h-index

185 g-index

270 ext. papers

41,343 ext. citations

3.1 avg, IF

7.56 L-index

#	Paper	IF	Citations
259	An analysis of why cuckoo search does not bring any novel ideas to optimization. <i>Computers and Operations Research</i> , 2022 , 142, 105747	4.6	3
258	ANTS 2020 Special Issue: Editorial. Swarm Intelligence, 2021, 15, 311-313	3	
257	Secure and secret cooperation in robot swarms. <i>Science Robotics</i> , 2021 , 6,	18.6	4
256	Swarm Robotics: Past, Present, and Future [Point of View]. <i>Proceedings of the IEEE</i> , 2021 , 109, 1152-11	65 14.3	26
255	Swarm Construction Coordinated Through the Building Material. <i>Communications in Computer and Information Science</i> , 2021 , 188-202	0.3	
254	A computational study on ant colony optimization for the traveling salesman problem with dynamic demands. <i>Computers and Operations Research</i> , 2021 , 135, 105359	4.6	4
253	PSO-X: A Component-Based Framework for the Automatic Design of Particle Swarm Optimization Algorithms. <i>IEEE Transactions on Evolutionary Computation</i> , 2021 , 1-1	15.6	3
252	Reflections on the future of swarm robotics. Science Robotics, 2020, 5,	18.6	41
251	Blockchain Technology Secures Robot Swarms: A Comparison of Consensus Protocols and Their Resilience to Byzantine Robots. <i>Frontiers in Robotics and AI</i> , 2020 , 7, 54	2.8	23
250	Language Evolution in Swarm Robotics: A Perspective. Frontiers in Robotics and AI, 2020, 7, 12	2.8	2
249	Construction Task Allocation Through the Collective Perception of a Dynamic Environment. <i>Lecture Notes in Computer Science</i> , 2020 , 82-95	0.9	3
248	Multi-robot Coverage Using Self-organized Networks for Central Coordination. <i>Lecture Notes in Computer Science</i> , 2020 , 216-228	0.9	1
247	A Blockchain-Controlled Physical Robot Swarm Communicating via an Ad-Hoc Network. <i>Lecture Notes in Computer Science</i> , 2020 , 3-15	0.9	3
246	Grey Wolf, Firefly and Bat Algorithms: Three Widespread Algorithms that Do Not Contain Any Novelty. <i>Lecture Notes in Computer Science</i> , 2020 , 121-133	0.9	14
245	HuGoS: A Multi-user Virtual Environment for Studying Human Human Swarm Intelligence. <i>Lecture Notes in Computer Science</i> , 2020 , 161-175	0.9	2
244	Formation Control of UAVs and Mobile Robots Using Self-organized Communication Topologies. <i>Lecture Notes in Computer Science</i> , 2020 , 306-314	0.9	5
243	Urban Swarms: A new approach for autonomous waste management 2019 ,		12

242	The intelligent water drops algorithm: why it cannot be considered a novel algorithm. <i>Swarm Intelligence</i> , 2019 , 13, 173-192	3	10
241	An open-source multi-robot construction system. <i>HardwareX</i> , 2019 , 5, e00050	2.7	7
240	ANTS 2018 special issue: Editorial. Swarm Intelligence, 2019 , 13, 169-172	3	
239	Supervised morphogenesis: Exploiting morphological flexibility of self-assembling multirobot systems through cooperation with aerial robots. <i>Robotics and Autonomous Systems</i> , 2019 , 112, 154-167	3.5	6
238	Ant Colony Optimization: Overview and Recent Advances. <i>Profiles in Operations Research</i> , 2019 , 311-35	11	155
237	Kilogrid: a novel experimental environment for the Kilobot robot. Swarm Intelligence, 2018, 12, 245-266	53	25
236	Human Responses to Stimuli Produced by Robot Swarms - the Effect of the Reality-Gap on Psychological State. <i>Springer Proceedings in Advanced Robotics</i> , 2018 , 531-543	0.6	1
235	Balancing exploitation of renewable resources by a robot swarm. Swarm Intelligence, 2018, 12, 307-326	3	8
234	Hybrid Control of Swarms for Resource Selection. Lecture Notes in Computer Science, 2018, 57-70	0.9	3
233	Kinetics of orbitally shaken particles constrained to two dimensions. <i>Physical Review E</i> , 2018 , 98,	2.4	2
232	Simulating Multi-robot Construction in ARGoS. Lecture Notes in Computer Science, 2018, 188-200	0.9	5
231	Why the Intelligent Water Drops Cannot Be Considered as a Novel Algorithm. <i>Lecture Notes in Computer Science</i> , 2018 , 302-314	0.9	3
230	Ant Colony Optimization: A Component-Wise Overview 2018 , 371-407		6
229	Structure and markings as stimuli for autonomous construction 2017,		6
228	Mergeable nervous systems for robots. <i>Nature Communications</i> , 2017 , 8, 439	17.4	26
227	ANTS 2016 special issue: Editorial. Swarm Intelligence, 2017 , 11, 181-183	3	
226	Analysis of the population-based ant colony optimization algorithm for the TSP and the QAP 2017,		7
225	Yield prediction in parallel homogeneous assembly. <i>Soft Matter</i> , 2017 , 13, 7595-7608	3.6	5

224	The Best-of-n Problem in Robot Swarms: Formalization, State of the Art, and Novel Perspectives. <i>Frontiers in Robotics and AI</i> , 2017 , 4,	2.8	83
223	The k -Unanimity Rule for Self-Organized Decision-Making in Swarms of Robots. <i>IEEE Transactions on Cybernetics</i> , 2016 , 46, 1175-88	10.2	43
222	Investigating the effect of increasing robot group sizes on the human psychophysiological state in the context of humanBwarm interaction. <i>Swarm Intelligence</i> , 2016 , 10, 193-210	3	20
221	Collective decision with 100 Kilobots: speed versus accuracy in binary discrimination problems. <i>Autonomous Agents and Multi-Agent Systems</i> , 2016 , 30, 553-580	2	77
220	Ant Colony Optimization: A Component-Wise Overview 2016 , 1-37		15
219	Autonomous Construction with Compliant Building Material. <i>Advances in Intelligent Systems and Computing</i> , 2016 , 1371-1388	0.4	9
218	Collective Perception of Environmental Features in a Robot Swarm. <i>Lecture Notes in Computer Science</i> , 2016 , 65-76	0.9	44
217	Population Coding: A New Design Paradigm for Embodied Distributed Systems. <i>Lecture Notes in Computer Science</i> , 2016 , 173-184	0.9	1
216	Modeling Robot Swarms Using Integrals of Birth-Death Processes. <i>ACM Transactions on Autonomous and Adaptive Systems</i> , 2016 , 11, 1-16	1.2	7
215	Kilogrid: A modular virtualization environment for the Kilobot robot 2016 ,		12
214	ANTS 2014 special issue: Editorial. Swarm Intelligence, 2015 , 9, 71-73	3	1
213	The TAM: abstracting complex tasks in swarm robotics research. Swarm Intelligence, 2015, 9, 1-22	3	21
212	Bio-inspired construction with mobile robots and compliant pockets. <i>Robotics and Autonomous Systems</i> , 2015 , 74, 340-350	3.5	24
211	Property-Driven Design for Robot Swarms. <i>ACM Transactions on Autonomous and Adaptive Systems</i> , 2015 , 9, 1-28	1.2	36
210	2015,		13
21 0	2015, A quantitative microfiacro link for collective decisions: the shortest path discovery/selection example. Swarm Intelligence, 2015, 9, 75-102	3	13 38
	A quantitative microfinacro link for collective decisions: the shortest path discovery/selection	3	•

(2013-2015)

206	Evolution of Self-Organized Task Specialization in Robot Swarms. <i>PLoS Computational Biology</i> , 2015 , 11, e1004273	5	62
205	A Design Pattern for Decentralised Decision Making. <i>PLoS ONE</i> , 2015 , 10, e0140950	3.7	78
204	Adaptation and Awareness in Robot Ensembles: Scenarios and Algorithms. <i>Lecture Notes in Computer Science</i> , 2015 , 471-494	0.9	12
203	A unified ant colony optimization algorithm for continuous optimization. <i>European Journal of Operational Research</i> , 2014 , 234, 597-609	5.6	84
202	Task partitioning in a robot swarm: object retrieval as a sequence of subtasks with direct object transfer. <i>Artificial Life</i> , 2014 , 20, 291-317	1.4	14
201	Self-organized task allocation to sequentially interdependent tasks in swarm robotics. <i>Autonomous Agents and Multi-Agent Systems</i> , 2014 , 28, 101-125	2	64
200	Cooperative navigation in robotic swarms. Swarm Intelligence, 2014, 8, 1-33	3	49
199	Ant Colony Optimization for Mixed-Variable Optimization Problems. <i>IEEE Transactions on Evolutionary Computation</i> , 2014 , 18, 503-518	15.6	148
198	A self-adaptive communication strategy for flocking in stationary and non-stationary environments. <i>Natural Computing</i> , 2014 , 13, 225-245	1.3	40
197	zePPeLIN: Distributed Path Planning Using an Overhead Camera Network. <i>International Journal of Advanced Robotic Systems</i> , 2014 , 11, 119	1.4	2
196	Gesturing at Subswarms: Towards Direct Human Control of Robot Swarms. <i>Lecture Notes in Computer Science</i> , 2014 , 390-403	0.9	6
195	Swarm robotics. <i>Scholarpedia Journal</i> , 2014 , 9, 1463	1.5	86
194	SRoCS: Leveraging Stigmergy on a Multi-robot Construction Platform for Unknown Environments. <i>Lecture Notes in Computer Science</i> , 2014 , 158-169	0.9	17
193	Towards a Cognitive Design Pattern for Collective Decision-Making. <i>Lecture Notes in Computer Science</i> , 2014 , 194-205	0.9	11
192	Derivation of a Micro-Macro Link for Collective Decision-Making Systems. <i>Lecture Notes in Computer Science</i> , 2014 , 181-190	0.9	11
191	Socially-Mediated Negotiation for Obstacle Avoidance in Collective Transport. <i>Springer Tracts in Advanced Robotics</i> , 2013 , 571-583	0.5	10
190	ANTS 2012 special issue. Swarm Intelligence, 2013 , 7, 79-81	3	
189	Task partitioning in a robot swarm: a study on the effect of communication. <i>Swarm Intelligence</i> , 2013 , 7, 173-199	3	13

188	On the use of Bio-PEPA for modelling and analysing collective behaviours in swarm robotics. <i>Swarm Intelligence</i> , 2013 , 7, 201-228	3	21
187	Swarmanoid: A Novel Concept for the Study of Heterogeneous Robotic Swarms. <i>IEEE Robotics and Automation Magazine</i> , 2013 , 20, 60-71	3.4	183
186	Autonomous task partitioning in robot foraging: an approach based on cost estimation. <i>Adaptive Behavior</i> , 2013 , 21, 118-136	1.1	26
185	Elasticity-based mechanism for the collective motion of self-propelled particles with springlike interactions: a model system for natural and artificial swarms. <i>Physical Review Letters</i> , 2013 , 111, 26830	27.4	62
184	Swarm robotics: a review from the swarm engineering perspective. Swarm Intelligence, 2013, 7, 1-41	3	782
183	Collective motion dynamics of active solids and active crystals. New Journal of Physics, 2013, 15, 095011	2.9	27
182	Majority Rule with Differential Latency: An Absorbing Markov Chain to Model Consensus. <i>Springer Proceedings in Complexity</i> , 2013 , 651-658	0.3	5
181	Can ants inspire robots? Belf-organized decision making in robotic swarms 2012,		7
180	Costs and benefits of behavioral specialization. <i>Robotics and Autonomous Systems</i> , 2012 , 60, 1408-1420	3.5	12
179	ARGoS: a modular, parallel, multi-engine simulator for multi-robot systems. <i>Swarm Intelligence</i> , 2012 , 6, 271-295	3	278
179 178		3	278
	2012 , 6, 271-295	3	
178	2012, 6, 271-295 An ACO algorithm benchmarked on the BBOB noiseless function testbed 2012,	1.1	4
178 177	2012, 6, 271-295 An ACO algorithm benchmarked on the BBOB noiseless function testbed 2012, Spatially targeted communication and self-assembly 2012, Self-organized flocking with a mobile robot swarm: a novel motion control method. Adaptive		8
178 177 176	An ACO algorithm benchmarked on the BBOB noiseless function testbed 2012, Spatially targeted communication and self-assembly 2012, Self-organized flocking with a mobile robot swarm: a novel motion control method. Adaptive Behavior, 2012, 20, 460-477 Multi-armed Bandit Formulation of the Task Partitioning Problem in Swarm Robotics. Lecture Notes	1.1	4 8 89
178 177 176	An ACO algorithm benchmarked on the BBOB noiseless function testbed 2012, Spatially targeted communication and self-assembly 2012, Self-organized flocking with a mobile robot swarm: a novel motion control method. Adaptive Behavior, 2012, 20, 460-477 Multi-armed Bandit Formulation of the Task Partitioning Problem in Swarm Robotics. Lecture Notes in Computer Science, 2012, 109-120	1.1	4 8 89 9
178 177 176 175	An ACO algorithm benchmarked on the BBOB noiseless function testbed 2012, Spatially targeted communication and self-assembly 2012, Self-organized flocking with a mobile robot swarm: a novel motion control method. Adaptive Behavior, 2012, 20, 460-477 Multi-armed Bandit Formulation of the Task Partitioning Problem in Swarm Robotics. Lecture Notes in Computer Science, 2012, 109-120 Analysing Robot Swarm Decision-Making with Bio-PEPA. Lecture Notes in Computer Science, 2012, 25-36 Analysing an Evolved Robotic Behaviour Using a Biological Model of Collegial Decision Making.	0.9	4 8 89 9 8

170	A Concise Overview of Applications of Ant Colony Optimization 2011,		16
169	Incremental social learning in particle swarms. <i>IEEE Transactions on Systems, Man, and Cybernetics</i> , 2011 , 41, 368-84		79
168	Self-organized discrimination of resources. <i>PLoS ONE</i> , 2011 , 6, e19888	3.7	35
167	ARGoS: A modular, multi-engine simulator for heterogeneous swarm robotics 2011 ,		7
166	Ant Colony Optimization 2011,		31
165	Task partitioning in swarms of robots: an adaptive method for strategy selection. <i>Swarm Intelligence</i> , 2011 , 5, 283-304	3	37
164	Majority-rule opinion dynamics with differential latency: a mechanism for self-organized collective decision-making. <i>Swarm Intelligence</i> , 2011 , 5, 305-327	3	69
163	ANTS 2010 special issue. Swarm Intelligence, 2011 , 5, 143-147	3	1
162	An incremental ant colony algorithm with local search for continuous optimization 2011,		33
161	A detailed analysis of the population-based ant colony optimization algorithm for the TSP and the QAP 2011 ,		19
160	Parameter Adaptation in Ant Colony Optimization 2011 , 191-215		42
159	ARGoS: A modular, multi-engine simulator for heterogeneous swarm robotics 2011,		48
158	Enhanced directional self-assembly based on active recruitment and guidance 2011,		5
157	Task Partitioning in Swarms of Robots: Reducing Performance Losses Due to Interference at Shared Resources. <i>Lecture Notes in Electrical Engineering</i> , 2011 , 217-228	0.2	12
156	Swarm-Bots to the Rescue. Lecture Notes in Computer Science, 2011, 165-172	0.9	7
155	Costs and Benefits of Behavioral Specialization. <i>Lecture Notes in Computer Science</i> , 2011 , 90-101	0.9	3
154	Engineering self-coordinating software intensive systems 2010 ,		1
153	Ant Colony Optimization: Overview and Recent Advances. <i>Profiles in Operations Research</i> , 2010 , 227-26	31	198

152	Incremental Social Learning Applied to a Decentralized Decision-Making Mechanism: Collective Learning Made Faster 2010 ,		2
151	Artificial pheromone for path selection by a foraging swarm of robots. <i>Biological Cybernetics</i> , 2010 , 2.	8	46
150	Self-assembly strategies in a group of autonomous mobile robots. <i>Autonomous Robots</i> , 2010 , 28, 439-455		35
149	Collective decision-making based on social odometry. <i>Neural Computing and Applications</i> , 2010 , 19, 807-82	23	36
148	Estimation-based metaheuristics for the probabilistic traveling salesman problem. <i>Computers and Operations Research</i> , 2010 , 37, 1939-1951	.6	27
147	An analysis of communication policies for homogeneous multi-colony ACO algorithms. <i>Information Sciences</i> , 2010 , 180, 2390-2404	7	50
146	Self-organized Task Partitioning in a Swarm of Robots. <i>Lecture Notes in Computer Science</i> , 2010 , 287-2980.	.9	5
145	Cooperation in a Heterogeneous Robot Swarm through Spatially Targeted Communication. <i>Lecture Notes in Computer Science</i> , 2010 , 400-407	.9	2
144	Coordinating Heterogeneous Swarms through Minimal Communication among Homogeneous Sub-swarms. <i>Lecture Notes in Computer Science</i> , 2010 , 558-559	.9	3
143	Book out! Docially-Mediated Obstacle Avoidance in Collective Transport. Lecture Notes in Computer Science, 2010 , 572-573	.9	1
142	Flocking in Stationary and Non-stationary Environments: A Novel Communication Strategy for Heading Alignment 2010 , 331-340		16
141	Evolution of Signaling in a Multi-Robot System: Categorization and Communication 2010 , 161-178		
140	Opinion Dynamics for Decentralized Decision-Making in a Robot Swarm. <i>Lecture Notes in Computer Science</i> , 2010 , 251-262	.9	3
139	Heterogeneous particle swarm optimizers 2009,		29
138	SWARMORPH: Multirobot Morphogenesis Using Directional Self-Assembly. <i>IEEE Transactions on Robotics</i> , 2009 , 25, 738-743	.5	39
137	Evolving self-assembly in autonomous homogeneous robots: experiments with two physical robots. Artificial Life, 2009 , 15, 465-84	4	36
136	Teamwork in Self-Organized Robot Colonies. <i>IEEE Transactions on Evolutionary Computation</i> , 2009 , 13, 695-711	5.6	90
135	From Fireflies to Fault-Tolerant Swarms of Robots. <i>IEEE Transactions on Evolutionary Computation</i> , 2009 , 13, 754-766	5.6	92

(2008-2009)

134	Frankenstein's PSO: A Composite Particle Swarm Optimization Algorithm. <i>IEEE Transactions on Evolutionary Computation</i> , 2009 , 13, 1120-1132	15.6	246
133	Adaptive sample size and importance sampling in estimation-based local search for the probabilistic traveling salesman problem. <i>European Journal of Operational Research</i> , 2009 , 199, 98-110	5.6	23
132	A survey on metaheuristics for stochastic combinatorial optimization. <i>Natural Computing</i> , 2009 , 8, 239-2	2 87 3	398
131	Estimation-based ant colony optimization and local search for the probabilistic traveling salesman problem. <i>Swarm Intelligence</i> , 2009 , 3, 223-242	3	39
130	Open E-puck Range & Bearing miniaturized board for local communication in swarm robotics 2009 ,		48
129	Towards group transport by swarms of robots. <i>International Journal of Bio-Inspired Computation</i> , 2009 , 1, 1	2.9	77
128	Social Odometry: Imitation Based Odometry in Collective Robotics. <i>International Journal of Advanced Robotic Systems</i> , 2009 , 6, 11	1.4	9
127	Self-Assembly at the Macroscopic Scale. <i>Proceedings of the IEEE</i> , 2008 , 96, 1490-1508	14.3	87
126	Self-Organizing and Scalable Shape Formation for a Swarm of Pico Satellites 2008,		15
125	Evolution of Solitary and Group Transport Behaviors for Autonomous Robots Capable of Self-Assembling. <i>Adaptive Behavior</i> , 2008 , 16, 285-305	1.1	36
124	Synchronization and fault detection in autonomous robots 2008,		6
123	Evolution of Signaling in a Multi-Robot System: Categorization and Communication. <i>Adaptive Behavior</i> , 2008 , 16, 5-26	1.1	27
122	Evolving homogeneous neurocontrollers for a group of heterogeneous robots: coordinated motion, cooperation, and acoustic communication. <i>Artificial Life</i> , 2008 , 14, 157-78	1.4	15
121	Estimation-Based Local Search for Stochastic Combinatorial Optimization Using Delta Evaluations: A Case Study on the Probabilistic Traveling Salesman Problem. <i>INFORMS Journal on Computing</i> , 2008 , 20, 644-658	2.4	27
120	An Open Localization and Local Communication Embodied Sensor. Sensors, 2008, 8, 7545-7563	3.8	45
119	Path formation in a robot swarm. Swarm Intelligence, 2008 , 2, 1-23	3	97
118	SWARMORPH-script: a language for arbitrary morphology generation in self-assembling robots. <i>Swarm Intelligence</i> , 2008 , 2, 143-165	3	34
117	Fault detection in autonomous robots based on fault injection and learning. <i>Autonomous Robots</i> , 2008 , 24, 49-67	3	52

116	Ant colony optimization for continuous domains. <i>European Journal of Operational Research</i> , 2008 , 185, 1155-1173	5.6	880
115	Particle swarm optimization. <i>Scholarpedia Journal</i> , 2008 , 3, 1486	1.5	31
114	Division of Labour in Self-organised Groups. Lecture Notes in Computer Science, 2008, 426-436	0.9	7
113	Evolution, Self-organization and Swarm Robotics. <i>Natural Computing Series</i> , 2008 , 163-191	2.5	16
112	Autonomous Reconfiguration in a Self-assembling Multi-robot System. <i>Lecture Notes in Computer Science</i> , 2008 , 259-266	0.9	3
111	Enhancing the Cooperative Transport of Multiple Objects. Lecture Notes in Computer Science, 2008, 307	-3194	1
110	Lattice Formation in Space for a Swarm of Pico Satellites. Lecture Notes in Computer Science, 2008, 347-	35.4)	1
109	Social Odometry in Populations of Autonomous Robots. <i>Lecture Notes in Computer Science</i> , 2008 , 371-3	78 .9	4
108	Automatic Synthesis of Fault Detection Modules for Mobile Robots 2007,		7
107	How to assess and report the performance of a stochastic algorithm on a benchmark problem: mean or best result on a number of runs?. <i>Optimization Letters</i> , 2007 , 1, 309-311	1.1	31
106	Self-sssembly and morphology control in a swarm-bot 2007 ,		3
105	Performance benefits of self-assembly in a swarm-bot 2007 ,		9
104	The ACO/F-Race Algorithm for Combinatorial Optimization Under Uncertainty 2007, 189-203		8
103	On the Invariance of Ant Colony Optimization. <i>IEEE Transactions on Evolutionary Computation</i> , 2007 , 11, 732-742	15.6	54
102	Morphology control in a multirobot system. <i>IEEE Robotics and Automation Magazine</i> , 2007 , 14, 18-25	3.4	57
101	Self-organized coordinated motion in groups of physically connected robots. <i>IEEE Transactions on Systems, Man, and Cybernetics</i> , 2007 , 37, 224-39		71
100	Exogenous Fault Detection in a Collective Robotic Task 2007 , 555-564		2
99	Swarms of Self-assembling Robots. <i>Lecture Notes in Computer Science</i> , 2007 , 1-2	0.9	

(2006-2007)

98	Ant colony optimization. <i>Scholarpedia Journal</i> , 2007 , 2, 1461	1.5	105
97	Swarm intelligence. <i>Scholarpedia Journal</i> , 2007 , 2, 1462	1.5	93
96	From Solitary to Collective Behaviours: Decision Making and Cooperation 2007, 575-584		5
95	Efficient Multi-foraging in Swarm Robotics 2007 , 696-705		28
94	A Mechanism to Self-Assemble Patterns with Autonomous Robots 2007 , 716-725		1
93	Self-Organised Task Allocation in a Group of Robots 2007 , 389-398		8
92	Cooperative hole avoidance in a swarm-bot. <i>Robotics and Autonomous Systems</i> , 2006 , 54, 97-103	3.5	67
91	Ant colony optimization. <i>IEEE Computational Intelligence Magazine</i> , 2006 , 1, 28-39	5.6	2001
90	Division of labor in a group of robots inspired by ants' foraging behavior. <i>ACM Transactions on Autonomous and Adaptive Systems</i> , 2006 , 1, 4-25	1.2	130
89	Cooperation through self-assembly in multi-robot systems. <i>ACM Transactions on Autonomous and Adaptive Systems</i> , 2006 , 1, 115-150	1.2	64
88	Negotiation of Goal Direction for Cooperative Transport. Lecture Notes in Computer Science, 2006, 191	-262 ₉	23
87	Parallel Ant Colony Optimization for the Traveling Salesman Problem. <i>Lecture Notes in Computer Science</i> , 2006 , 224-234	0.9	46
86	Ant-based clustering and topographic mapping. Artificial Life, 2006, 12, 35-61	1.4	133
85	Autonomous Self-Assembly in Swarm-Bots 2006 , 22, 1115-1130		202
84	Towards a theory of practice in metaheuristics design: A machine learning perspective. <i>RAIRO</i> - <i>Theoretical Informatics and Applications</i> , 2006 , 40, 353-369	0.5	20
83	Ant Colony Optimization. IEEE Computational Intelligence Magazine, 2006, 1, 28-39	5.6	574
82	Self-organisation and communication in groups of simulated and physical robots. <i>Biological Cybernetics</i> , 2006 , 95, 213-31	2.8	49
81	Swarm-bot: A Novel Type of Self-Assembling Robot 2006 , 3-4		

80	Evolved Homogeneous Neuro-controllers for Robots with Different Sensory Capabilities: Coordinated Motion and Cooperation. <i>Lecture Notes in Computer Science</i> , 2006 , 679-690	0.9	4
79	Operational Aspects of the Evolved Signalling Behaviour in a Group of Cooperating and Communicating Robots. <i>Lecture Notes in Computer Science</i> , 2006 , 113-127	0.9	О
78	Evolution of Signalling in a Group of Robots Controlled by Dynamic Neural Networks 2006 , 173-188		4
77	A Comparison of Particle Swarm Optimization Algorithms Based on Run-Length Distributions. <i>Lecture Notes in Computer Science</i> , 2006 , 1-12	0.9	14
76	Chain Based Path Formation in Swarms of Robots. Lecture Notes in Computer Science, 2006, 120-131	0.9	22
75	Incremental Local Search in Ant Colony Optimization: Why It Fails for the Quadratic Assignment Problem. <i>Lecture Notes in Computer Science</i> , 2006 , 156-166	0.9	4
74	On the Invariance of Ant System. Lecture Notes in Computer Science, 2006, 215-223	0.9	3
73	Incremental Evolution of Robot Controllers for a Highly Integrated Task. <i>Lecture Notes in Computer Science</i> , 2006 , 473-484	0.9	9
72	Autonomous Self-assembly in a Swarm-bot 2006 , 314-322		15
71	Search bias in ant colony optimization: on the role of competition-balanced systems. <i>IEEE Transactions on Evolutionary Computation</i> , 2005 , 9, 159-174	15.6	55
70	SWARM-BOT: an experiment in swarm robotics 2005 ,		32
69	The SWARM-BOTS Project. <i>Lecture Notes in Computer Science</i> , 2005 , 31-44	0.9	35
68	. IEEE Robotics and Automation Magazine, 2005 , 12, 21-28	3.4	123
67	Ant colony optimization theory: A survey. <i>Theoretical Computer Science</i> , 2005 , 344, 243-278	1.1	1400
66	Evolving Neural Mechanisms for an Iterated Discrimination Task: A Robot Based Model. <i>Lecture Notes in Computer Science</i> , 2005 , 231-240	0.9	2
65	Self-assembly on Demand in a Group of Physical Autonomous Mobile Robots Navigating Rough Terrain. <i>Lecture Notes in Computer Science</i> , 2005 , 272-281	0.9	14
64	Efficiency and Task Allocation in Prey Retrieval. Lecture Notes in Computer Science, 2004, 274-289	0.9	13
63	Evolving a Cooperative Transport Behavior for Two Simple Robots. <i>Lecture Notes in Computer Science</i> , 2004 , 305-316	0.9	11

62	Beeling the flow of time through sensorimotor co-ordination. Connection Science, 2004, 16, 301-324	2.8	17
61	Strategies for the Increased Robustness of Ant-Based Clustering. <i>Lecture Notes in Computer Science</i> , 2004 , 90-104	0.9	24
60	Model-Based Search for Combinatorial Optimization: A Critical Survey. <i>Annals of Operations Research</i> , 2004 , 131, 373-395	3.2	141
59	Swarm-Bot: A New Distributed Robotic Concept. <i>Autonomous Robots</i> , 2004 , 17, 193-221	3	217
58	Evolving Self-Organizing Behaviors for a Swarm-Bot. <i>Autonomous Robots</i> , 2004 , 17, 223-245	3	200
57	The hyper-cube framework for ant colony optimization. <i>IEEE Transactions on Systems, Man, and Cybernetics</i> , 2004 , 34, 1161-72		235
56	Ant Colony Optimization 2004 ,		1761
55	Cooperative Transport of Objects of Different Shapes and Sizes. <i>Lecture Notes in Computer Science</i> , 2004 , 106-117	0.9	14
54	Deception in Ant Colony Optimization. Lecture Notes in Computer Science, 2004, 118-129	0.9	16
53	Evolution of Direct Communication for a Swarm-bot Performing Hole Avoidance. <i>Lecture Notes in Computer Science</i> , 2004 , 130-141	0.9	14
52	Group Transport of an Object to a Target That Only Some Group Members May Sense. <i>Lecture Notes in Computer Science</i> , 2004 , 852-861	0.9	12
	Notes in Computer Science, 2004, 032 001		
51	A Comparison of the Performance of Different Metaheuristics on the Timetabling Problem. <i>Lecture Notes in Computer Science</i> , 2003 , 329-351	0.9	54
50	A Comparison of the Performance of Different Metaheuristics on the Timetabling Problem. <i>Lecture</i>	0.9	54 54
	A Comparison of the Performance of Different Metaheuristics on the Timetabling Problem. <i>Lecture Notes in Computer Science</i> , 2003 , 329-351	0.9	
50	A Comparison of the Performance of Different Metaheuristics on the Timetabling Problem. <i>Lecture Notes in Computer Science</i> , 2003 , 329-351 Evolving Aggregation Behaviors in a Swarm of Robots. <i>Lecture Notes in Computer Science</i> , 2003 , 865-874 The Ant Colony Optimization Metaheuristic: Algorithms, Applications, and Advances. <i>Profiles in</i>	0.9 40.9	54
50	A Comparison of the Performance of Different Metaheuristics on the Timetabling Problem. <i>Lecture Notes in Computer Science</i> , 2003 , 329-351 Evolving Aggregation Behaviors in a Swarm of Robots. <i>Lecture Notes in Computer Science</i> , 2003 , 865-874 The Ant Colony Optimization Metaheuristic: Algorithms, Applications, and Advances. <i>Profiles in Operations Research</i> , 2003 , 250-285 An Ant Colony Optimization Approach to the Probabilistic Traveling Salesman Problem. <i>Lecture</i>	0.9 40.9	54
50 49 48	A Comparison of the Performance of Different Metaheuristics on the Timetabling Problem. Lecture Notes in Computer Science, 2003, 329-351 Evolving Aggregation Behaviors in a Swarm of Robots. Lecture Notes in Computer Science, 2003, 865-874 The Ant Colony Optimization Metaheuristic: Algorithms, Applications, and Advances. Profiles in Operations Research, 2003, 250-285 An Ant Colony Optimization Approach to the Probabilistic Traveling Salesman Problem. Lecture Notes in Computer Science, 2002, 883-892	0.9 40.9 1	54 217 45

44	Model-Based Search for Combinatorial Optimization: A Comparative Study. <i>Lecture Notes in Computer Science</i> , 2002 , 651-661	0.9	9
43	Toward the Formal Foundation of Ant Programming. Lecture Notes in Computer Science, 2002, 188-201	0.9	23
42	Updating ACO Pheromones Using Stochastic Gradient Ascent and Cross-Entropy Methods. <i>Lecture Notes in Computer Science</i> , 2002 , 21-30	0.9	10
41	Design of Iterated Local Search Algorithms. <i>Lecture Notes in Computer Science</i> , 2001 , 441-451	0.9	29
40	Ant Algorithms Solve Difficult Optimization Problems. Lecture Notes in Computer Science, 2001, 11-22	0.9	13
39	Ant algorithms and stigmergy. Future Generation Computer Systems, 2000, 16, 851-871	7.5	506
38	Inspiration for optimization from social insect behaviour. <i>Nature</i> , 2000 , 406, 39-42	50.4	637
37	Ant Colony Optimization for the Total Weighted Tardiness Problem. <i>Lecture Notes in Computer Science</i> , 2000 , 611-620	0.9	73
36	An Ant Colony System Hybridized with a New Local Search for the Sequential Ordering Problem. <i>INFORMS Journal on Computing</i> , 2000 , 12, 237-255	2.4	240
35	What Is a Learning Classifier System?. Lecture Notes in Computer Science, 2000, 3-32	0.9	53
34	Ant algorithms for discrete optimization. <i>Artificial Life</i> , 1999 , 5, 137-72	1.4	1706
33	Swarm Intelligence 1999 ,		3062
32	Metaheuristics for High School Timetabling. Computational Optimization and Applications, 1998, 9, 275-	29.84	44
31	Ant colonies for adaptive routing in packet-switched communications networks. <i>Lecture Notes in Computer Science</i> , 1998 , 673-682	0.9	52
30	Incremental Robot Shaping. <i>Connection Science</i> , 1998 , 10, 341-360	2.8	33
29	Reply to Dario Floreano's "Engineering Adaptive Behavior". <i>Adaptive Behavior</i> , 1997 , 5, 417-420	1.1	1
28	Prdis of Robot Shaping: An Experiment in Behavior Engineering. Adaptive Behavior, 1997, 5, 391-405	1.1	4
27	Ant colony system: a cooperative learning approach to the traveling salesman problem. <i>IEEE Transactions on Evolutionary Computation</i> , 1997 , 1, 53-66	15.6	4401

26	Ant colonies for the travelling salesman problem. <i>BioSystems</i> , 1997 , 43, 73-81	1.9	1175
25	Training and delayed reinforcements in Q-learning agents 1997 , 12, 695-724		8
24	Ant system: optimization by a colony of cooperating agents. <i>IEEE Transactions on Systems, Man, and Cybernetics</i> , 1996 , 26, 29-41		6150
23	Behavior analysis and training-a methodology for behavior engineering. <i>IEEE Transactions on Systems, Man, and Cybernetics</i> , 1996 , 26, 365-80		46
22	A study of some properties of Ant-Q. Lecture Notes in Computer Science, 1996, 656-665	0.9	61
21	An application of evolutionary algorithms to the scheduling of robotic operations. <i>Lecture Notes in Computer Science</i> , 1996 , 345-354	0.9	
20	Algodesk: An experimental comparison of eight evolutionary heuristics applied to the Quadratic Assignment Problem. <i>European Journal of Operational Research</i> , 1995 , 81, 188-204	5.6	38
19	Ant-Q: A Reinforcement Learning approach to the traveling salesman problem 1995 , 252-260		206
18	Evolutionary Learning for Intelligent Automation: A Case Study. <i>Intelligent Automation and Soft Computing</i> , 1995 , 1, 29-42	2.6	6
17	ALECSYS and the AutonoMouse: Learning to Control a Real Robot by Distributed Classifier Systems. <i>Machine Learning</i> , 1995 , 19, 209-240	4	O
16	Alecsys and the AutonoMouse: Learning to control a real robot by distributed classifier systems. <i>Machine Learning</i> , 1995 , 19, 209-240	4	33
15	Training Agents to Perform Sequential Behavior. <i>Adaptive Behavior</i> , 1994 , 2, 247-275	1.1	32
14	Robot shaping: developing autonomous agents through learning. <i>Artificial Intelligence</i> , 1994 , 71, 321-3	79 .6	117
13	Adaptive learning of a robot arm. <i>Lecture Notes in Computer Science</i> , 1994 , 180-194	0.9	6
12	Genetic and Non-Genetic Operators in ALECSYS. Evolutionary Computation, 1993, 1, 151-164	4.3	28
11	Implicit parallelism in genetic algorithms. Artificial Intelligence, 1993 , 61, 307-314	3.6	38
10	. IEEE Transactions on Systems, Man, and Cybernetics, 1993 , 23, 141-154		90
9	Using transputers to increase speed and flexibility of genetics-based machine learning systems. <i>Microprocessing and Microprogramming</i> , 1992 , 34, 147-152		11

8 On the Use of Transputers to Implement Neural Networks **1991**, 179-186

7	New perspectives about default hierarchies formation in learning classifier systems. <i>Lecture Notes in Computer Science</i> , 1991 , 218-227	0.9	5
6	Emergent collective decisions in a swarm of robots		8
5	Object transport by modular robots that self-assemble		13
4	Transport of an object by six pre-attached robots interacting via physical links		15
3	Metaphor-based metaheuristics, a call for action: the elephant in the room. Swarm Intelligence,1	3	4
2	Information Aggregation Mechanisms in Social Odometry		2
1	HuGoS: a virtual environment for studying collective human behavior from a swarm intelligence perspective. <i>Swarm Intelligence</i> ,1	3	1