Daniela Ribeiro Pinheiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/429627/publications.pdf

Version: 2024-02-01

1307594 1474206 9 90 9 7 citations g-index h-index papers 10 10 10 121 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Deep in blue with green chemistry: influence of solvent and chain length on the behaviour of <i>N</i> and <i>N</i> , <i>N</i> , <i>N</i> , <i>N</i>	7.4	17
2	Red-Purple Photochromic Indigos from Green Chemistry: Mono- <i>t</i> BOC or Di- <i>t</i> BOC or Di- <i>ti>BOC or Di-<i>ti>BOC or Di-<i>ti>BOC or Di-<i>ti>BOC or Di-<i>ti>BOC or Di-<i>ti>BOC or Di-<i>ti>BOC or Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-<i>Di-</i>Di-</i>Di-Di-Di-</i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i>	2.6	8
3	Sulfonated tryptanthrin anolyte increases performance in pH neutral aqueous redox flow batteries. Communications Chemistry, 2021, 4, .	4.5	11
4	Tryptanthrin derivatives as efficient singlet oxygen sensitizers. Photochemical and Photobiological Sciences, $2021, 1.$	2.9	1
5	I2/NaH/DMF as oxidant trio for the synthesis of tryptanthrin from indigo or isatin. Dyes and Pigments, 2020, 173, 107935.	3.7	11
6	Tryptanthrin from indigo: Synthesis, excited state deactivation routes and efficient singlet oxygen sensitization. Dyes and Pigments, 2020, 175, 108125.	3.7	7
7	Probing metal cations with two new Schiff base bischromophoric pyrene based chemosensors: Synthesis, photophysics and interactions patterns. Dyes and Pigments, 2016, 134, 601-612.	3.7	8
8	From yellow to pink using a fluorimetric and colorimetric pyrene derivative and mercury (II) ions. Dyes and Pigments, 2014, 110, 152-158.	3.7	21
9	The effect of polyaromatic hydrocarbons on the spectral and photophysical properties of diaryl-pyrrole derivatives: an experimental and theoretical study. Physical Chemistry Chemical Physics, 2014, 16, 18319.	2.8	6