
Takashi Ide

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4296121/publications.pdf Version: 2024-02-01

ΤλκλομιΙσε

#	Article	IF	CITATIONS
1	An Oil Rich in Î ³ -Linolenic Acid Differently Affects Hepatic Fatty Acid Oxidation in Mice and Rats. Biological and Pharmaceutical Bulletin, 2020, 43, 1382-1392.	1.4	4
2	Physiological effects of an oil rich in Î ³ -linolenic acid on hepatic fatty acid oxidation and serum lipid levels in genetically hyperlipidemic mice. Journal of Clinical Biochemistry and Nutrition, 2019, 64, 148-157.	1.4	11
3	Physiological activities of the combination of fish oil and α-lipoic acid affecting hepatic lipogenesis and parameters related to oxidative stress in rats. European Journal of Nutrition, 2018, 57, 1545-1561.	3.9	5
4	Physiological effects of γ-linolenic acid and sesamin on hepatic fatty acid synthesis and oxidation. Journal of Nutritional Biochemistry, 2017, 41, 42-55.	4.2	16
5	α -Lipoic acid ameliorated oxidative stress induced by perilla oil, but the combination of these dietary factors was ineffective to cause marked deceases in serum lipid levels in rats. Nutrition Research, 2017, 48, 49-64.	2.9	3
6	Comparative Effects of Sesame Seeds Differing in Lignan Contents and Composition on Fatty Acid Oxidation in Rat Liver. Journal of Oleo Science, 2015, 64, 211-222.	1.4	12
7	Activity and mRNA Levels of Enzymes Involved in Hepatic Fatty Acid Synthesis in Rats Fed Naringenin. Journal of Agricultural and Food Chemistry, 2015, 63, 9536-9542.	5.2	17
8	Combined effect of sesamin and soybean phospholipid on hepatic fatty acid metabolism in rats. Journal of Clinical Biochemistry and Nutrition, 2014, 54, 210-218.	1.4	7
9	Effect of dietary α-lipoic acid on the mRNA expression of genes involved in drug metabolism and antioxidation system in rat liver. British Journal of Nutrition, 2014, 112, 295-308.	2.3	13
10	Combined effect of sesamin and α-lipoic acid on hepatic fatty acid metabolism in rats. European Journal of Nutrition, 2013, 52, 1015-1027.	3.9	16
11	Effects of dietary α-lipoic acid enantiomers on hepatic fatty acid metabolism in rats. Journal of Functional Foods, 2013, 5, 71-79.	3.4	14
12	Interrelated effects of dihomo-l³-linolenic and arachidonic acids, and sesamin on hepatic fatty acid synthesis and oxidation in rats. British Journal of Nutrition, 2012, 108, 1980-1993.	2.3	9
13	Fish oil at low dietary levels enhances physiological activity of sesamin to increase hepatic fatty acid oxidation in rats. Journal of Clinical Biochemistry and Nutrition, 2012, 51, 241-247.	1.4	1
14	Antioxidant Capacities and Total Quercetin Content of Several Species of Polygonaceae in Mongolia. Food Science and Technology Research, 2010, 16, 169-174.	0.6	5
15	Enzymatic-HPLC Method to AnalyzeD-3-Hydroxybutyric Acid in Rat Serum. Bioscience, Biotechnology and Biochemistry, 2010, 74, 1578-1582.	1.3	5
16	Comparative Study of Sesame Lignans (Sesamin, Episesamin and Sesamolin) Affecting Gene Expression Profile and Fatty Acid Oxidation in Rat Liver. Journal of Nutritional Science and Vitaminology, 2009, 55, 31-43.	0.6	50
17	Dietary lipoic acid-dependent changes in the activity and mRNA levels of hepatic lipogenic enzymes in rats. British Journal of Nutrition, 2008, 100, 79-87.	2.3	54
18	Comparative analysis of sesame lignans (sesamin and sesamolin) in affecting hepatic fatty acid metabolism in rats. British Journal of Nutrition, 2007, 97, 85-95.	2.3	62

Takashi Ide

#	Article	IF	CITATIONS
19	Dietary sesamin and docosahexaenoic and eicosapentaenoic acids synergistically increase the gene expression of enzymes involved in hepatic peroxisomal fatty acid oxidation in rats. Metabolism: Clinical and Experimental, 2006, 55, 381-390.	3.4	13
20	Interaction of Fish Oil and Conjugated Linoleic Acid in Affecting Hepatic Activity of Lipogenic Enzymes and Gene Expression in Liver and Adipose Tissue. Diabetes, 2005, 54, 412-423.	0.6	125
21	Effect of n-3 fatty acids on serum lipid levels and hepatic fatty acid metabolism in BALB/c.KOR-Apoeshl mice deficient in apolipoprotein E expression. Journal of Nutritional Biochemistry, 2004, 15, 169-178.	4.2	21
22	Interaction of dietary fat types and sesamin on hepatic fatty acid oxidation in rats. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2004, 1682, 80-91.	2.4	36
23	Species differences in the physiological activity of dietary lignan (sesamin and episesamin) in affecting hepatic fatty acid metabolism. British Journal of Nutrition, 2004, 91, 377-386.	2.3	28
24	Divergent effects of eicosapentaenoic and docosahexaenoic acid ethyl esters, and fish oil on hepatic fatty acid oxidation in the rat. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2003, 1635, 29-36.	2.4	37
25	Comparative effect of sesamin and episesamin on the activity and gene expression of enzymes in fatty acid oxidation and synthesis in rat liver. Journal of Nutritional Biochemistry, 2002, 13, 289-295.	4.2	62
26	Sesamin, a sesame lignan, decreases fatty acid synthesis in rat liver accompanying the down-regulation of sterol regulatory element binding protein-1. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2001, 1534, 1-13.	2.4	85
27	Dietary <i>n</i> -3 fatty acids affect mRNA level of brown adipose tissue uncoupling protein 1, and white adipose tissue leptin and glucose transporter 4 in the rat. British Journal of Nutrition, 2000, 84, 175-184.	2.3	154
28	Effect of dietary α-linolenic acid on the activity and gene expression of hepatic fatty acid oxidation enzymes. BioFactors, 2000, 13, 9-14.	5.4	37
29	Dietary gamma-linolenic acid in the form of borage oil causes less body fat accumulation accompanying an increase in uncoupling protein 1 mRNA level in brown adipose tissue. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2000, 127, 213-222.	1.6	36
30	Comparative effects of perilla and fish oils on the activity and gene expression of fatty acid oxidation enzymes in rat liver. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2000, 1485, 23-35.	2.4	134
31	Sesamin, a sesame lignan, is a potent inducer of hepatic fatty acid oxidation in the rat. Metabolism: Clinical and Experimental, 1999, 48, 1303-1313.	3.4	137
32	Comparative effects of α- and γ-linolenic acids on rat liver fatty acid oxidation. Lipids, 1998, 33, 647-654.	1.7	38
33	Reciprocal responses to dietary diacylglycerol of hepatic enzymes of fatty acid synthesis and oxidation in the rat. British Journal of Nutrition, 1997, 77, 107-121.	2.3	128
34	Activity of hepatic fatty acid oxidation enzymes in rats fed α-linolenic acid. Lipids and Lipid Metabolism, 1996, 1304, 105-119.	2.6	48
35	Octadecatrienoic acids as the substrates for the key enzymes in glycerolipid biosynthesis and fatty acid oxidation in rat liver. Lipids, 1995, 30, 755-762.	1.7	23
36	Reduction by Guanidinoethane Sulfonate of the Activities of Enzymes Involved in Taurine Synthesis in Rat Liver. Bioscience, Biotechnology and Biochemistry, 1994, 58, 1584-1588.	1.3	4

Takashi Ide

#	Article	IF	CITATIONS
37	Interaction of Dietary Protein Differing in Sulfur Amino Acid Content and Pectin on Bile Acid Conjugation in Immature and Mature Rats. Journal of Nutrition, 1991, 121, 985-993.	2.9	9
38	Contrasting effects of water-soluble and water-insoluble dietary fibers on bile acid conjugation and taurine metabolism in the rat. Lipids, 1990, 25, 335-340.	1.7	36
39	Reciprocal responses to clofibrate in ketogenesis and triglyceride and cholesterol secretion in isolated rat liver. Metabolism: Clinical and Experimental, 1982, 31, 1065-1072.	3.4	70
40	Regulation by Dietary Fats of 3-Hydroxy-3-Methylglutaryl-Coenzyme a Reductase in Rat Liver. Journal of Nutrition, 1978, 108, 601-612.	2.9	145