
Thomas E Bachman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4296045/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Statistical Description of SaO2–SpO2 Relationship for Model of Oxygenation in Premature Infants. Electronics (Switzerland), 2022, 11, 1314.	1.8	0
2	PREVALENCE OF POTENTIALLY CLINICALLY RELEVANT COMPLEX EPISODES OF EXTREME SpO2 DURING MANUAL AND AUTOMATIC CONTROL OF INSPIRED OXYGEN. Lekar A Technika, 2022, 52, 23-28.	0.1	1
3	COMPARISON OF THE RELATIVE CHANGE IN THE RATIO OF PaO2 AND FiO2 DURING PERIODS OF CONTROLLED THERAPEUTIC INTERVENTION AND ROUTINE CARE. Lekar A Technika, 2022, 52, 14-17.	0.1	0
4	Frequency and duration of extreme hypoxemic and hyperoxemic episodes during manual and automatic oxygen control in preterm infants: a retrospective cohort analysis from randomized studies. BMC Pediatrics, 2022, 22, .	0.7	3
5	The harm of high-frequency oscillatory ventilation (HFOV) in ARDS is not related to a high baseline risk of acute cor pulmonale or short-term changes in hemodynamics. Intensive Care Medicine, 2020, 46, 132-134.	3.9	7
6	Thresholds for oximetry alarms and target range in the NICU: an observational assessment based on likely oxygen tension and maturity. BMC Pediatrics, 2020, 20, 317.	0.7	10
7	FREQUENCY AND DURATION OF OXIMETER DROP-OUTS IN THE NICU: AN OBSERVATIONAL STUDY. Lekar A Technika, 2020, 50, 12-15.	0.1	0
8	Sensitivity analysis of a computer model of neonatal oxygen transport. Current Directions in Biomedical Engineering, 2020, 6, 99-102.	0.2	0
9	Hypoxemic and hyperoxemic likelihood in pulse oximetry ranges: NICU observational study. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2019, 104, F274-F279.	1.4	13
10	Evaluation of two SpO2 alarm strategies during automated FiO2 control in the NICU: a randomized crossover study. BMC Pediatrics, 2019, 19, 142.	0.7	14
11	Model of SpO2 signal of the neonate. Current Directions in Biomedical Engineering, 2019, 5, 549-552.	0.2	1
12	Computer model of oxygenation in neonates. Current Directions in Biomedical Engineering, 2019, 5, 73-76.	0.2	1
13	THE ADOPTION OF AUTOMATED FIO2 CONTROL INTO POLISH NICUS: 2012-2019. Lekar A Technika, 2019, 49, 119-124.	0.1	1
14	High-Frequency Oscillatory Ventilation in Pediatric Acute Lung Injury. Critical Care Medicine, 2015, 43, 2660-2667.	0.4	35
15	Quicker response results in better SpO2 control – a comparison of 3 FiO2-titration strategies in ventilated preterm infants. Annals of Agricultural and Environmental Medicine, 2015, 22, 708-712.	0.5	7
16	Automated versus Manual Oxygen Control with Different Saturation Targets and Modes of Respiratory Support in Preterm Infants. Journal of Pediatrics, 2015, 167, 545-550.e2.	0.9	88
17	It Is Too Early to Declare Early or Late Rescue High-Frequency Oscillatory Ventilation Dead. JAMA Pediatrics, 2014, 168, 862.	3.3	14
18	Automated FiO2-SpO2 control system in Neonates requiring respiratory support: a comparison of a standard to a parrow SpO2 control range, BMC Pediatrics, 2014, 14, 130	0.7	19

#	Article	IF	CITATIONS
19	A multicenter randomized controlled trial comparing effectiveness of two nasal continuous positive airway pressure devices in very-low-birth-weight infants. Pediatric Critical Care Medicine, 2012, 13, 191-196.	0.2	17
20	Multicenter Crossover Study of Automated Control of Inspired Oxygen in Ventilated Preterm Infants. Pediatrics, 2011, 127, e76-e83.	1.0	149
21	Factors effecting adoption of new neonatal and pediatric respiratory technologies. Intensive Care Medicine, 2008, 34, 174-178.	3.9	9
22	Primary Pulmonary Sporotrichosis: A Case Report. Chest, 2004, 126, 945S.	0.4	89
23	A META ANALYSIS OF THE OUTCOMES OF THE RANDOMIZED CONTROLLED TRIALS OF THE 3100A HIGH FREQUENCY OSCILLATORY VENTILATOR. (HFOV) 1816. Pediatric Research, 1997, 41, 305-305.	1.1	0
24	Automated Oxygen Delivery in Neonatal Intensive Care. Frontiers in Pediatrics, 0, 10, .	0.9	9