
Thomas E Bachman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4296045/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multicenter Crossover Study of Automated Control of Inspired Oxygen in Ventilated Preterm Infants. Pediatrics, 2011, 127, e76-e83.	1.0	149
2	Primary Pulmonary Sporotrichosis: A Case Report. Chest, 2004, 126, 945S.	0.4	89
3	Automated versus Manual Oxygen Control with Different Saturation Targets and Modes of Respiratory Support in Preterm Infants. Journal of Pediatrics, 2015, 167, 545-550.e2.	0.9	88
4	High-Frequency Oscillatory Ventilation in Pediatric Acute Lung Injury. Critical Care Medicine, 2015, 43, 2660-2667.	0.4	35
5	Automated FiO2-SpO2 control system in Neonates requiring respiratory support: a comparison of a standard to a narrow SpO2 control range. BMC Pediatrics, 2014, 14, 130.	0.7	19
6	A multicenter randomized controlled trial comparing effectiveness of two nasal continuous positive airway pressure devices in very-low-birth-weight infants. Pediatric Critical Care Medicine, 2012, 13, 191-196.	0.2	17
7	It Is Too Early to Declare Early or Late Rescue High-Frequency Oscillatory Ventilation Dead. JAMA Pediatrics, 2014, 168, 862.	3.3	14
8	Evaluation of two SpO2 alarm strategies during automated FiO2 control in the NICU: a randomized crossover study. BMC Pediatrics, 2019, 19, 142.	0.7	14
9	Hypoxemic and hyperoxemic likelihood in pulse oximetry ranges: NICU observational study. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2019, 104, F274-F279.	1.4	13
10	Thresholds for oximetry alarms and target range in the NICU: an observational assessment based on likely oxygen tension and maturity. BMC Pediatrics, 2020, 20, 317.	0.7	10
11	Factors effecting adoption of new neonatal and pediatric respiratory technologies. Intensive Care Medicine, 2008, 34, 174-178.	3.9	9
12	Automated Oxygen Delivery in Neonatal Intensive Care. Frontiers in Pediatrics, 0, 10, .	0.9	9
13	Quicker response results in better SpO2 control – a comparison of 3 FiO2-titration strategies in ventilated preterm infants. Annals of Agricultural and Environmental Medicine, 2015, 22, 708-712.	0.5	7
14	The harm of high-frequency oscillatory ventilation (HFOV) in ARDS is not related to a high baseline risk of acute cor pulmonale or short-term changes in hemodynamics. Intensive Care Medicine, 2020, 46, 132-134.	3.9	7
15	Frequency and duration of extreme hypoxemic and hyperoxemic episodes during manual and automatic oxygen control in preterm infants: a retrospective cohort analysis from randomized studies. BMC Pediatrics, 2022, 22, .	0.7	3
16	Model of SpO2 signal of the neonate. Current Directions in Biomedical Engineering, 2019, 5, 549-552.	0.2	1
17	Computer model of oxygenation in neonates. Current Directions in Biomedical Engineering, 2019, 5, 73-76.	0.2	1
18	THE ADOPTION OF AUTOMATED FiO2 CONTROL INTO POLISH NICUS: 2012-2019. Lekar A Technika, 2019, 49, 119-124.	0.1	1

2

#	Article	IF	CITATIONS
19	PREVALENCE OF POTENTIALLY CLINICALLY RELEVANT COMPLEX EPISODES OF EXTREME SpO2 DURING MANUAL AND AUTOMATIC CONTROL OF INSPIRED OXYGEN. Lekar A Technika, 2022, 52, 23-28.	0.1	1
20	A META ANALYSIS OF THE OUTCOMES OF THE RANDOMIZED CONTROLLED TRIALS OF THE 3100A HIGH FREQUENCY OSCILLATORY VENTILATOR. (HFOV) 1816. Pediatric Research, 1997, 41, 305-305.	1.1	0
21	FREQUENCY AND DURATION OF OXIMETER DROP-OUTS IN THE NICU: AN OBSERVATIONAL STUDY. Lekar A Technika, 2020, 50, 12-15.	0.1	Ο
22	Sensitivity analysis of a computer model of neonatal oxygen transport. Current Directions in Biomedical Engineering, 2020, 6, 99-102.	0.2	0
23	Statistical Description of SaO2–SpO2 Relationship for Model of Oxygenation in Premature Infants. Electronics (Switzerland), 2022, 11, 1314.	1.8	0
24	COMPARISON OF THE RELATIVE CHANGE IN THE RATIO OF PaO2 AND FiO2 DURING PERIODS OF CONTROLLED THERAPEUTIC INTERVENTION AND ROUTINE CARE. Lekar A Technika, 2022, 52, 14-17.	0.1	0