
Marco Bisaglia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4295997/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Kinetic and Structural Analysis of the Early Oxidation Products of Dopamine. Journal of Biological Chemistry, 2007, 282, 15597-15605.	1.6	254
2	Structural insights on physiological functions and pathological effects of ±â€synuclein. FASEB Journal, 2009, 23, 329-340.	0.2	129
3	Copper Ions and Parkinson's Disease: Why Is Homeostasis So Relevant?. Biomolecules, 2020, 10, 195.	1.8	107
4	Dopamine quinones interact with α-synuclein to form unstructured adducts. Biochemical and Biophysical Research Communications, 2010, 394, 424-428.	1.0	83
5	Anti-Oxidants in Parkinson's Disease Therapy: A Critical Point of View. Current Neuropharmacology, 2016, 14, 260-271.	1.4	82
6	DJ-1 Is a Copper Chaperone Acting on SOD1 Activation. Journal of Biological Chemistry, 2014, 289, 10887-10899.	1.6	76
7	Recent findings on the physiological function of DJ-1: Beyond Parkinson's disease. Neurobiology of Disease, 2017, 108, 65-72.	2.1	74
8	Molecular characterization of dopamine-derived quinones reactivity toward NADH and glutathione: Implications for mitochondrial dysfunction in Parkinson disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2010, 1802, 699-706.	1.8	67
9	Are dopamine derivatives implicated in the pathogenesis of Parkinson's disease?. Ageing Research Reviews, 2014, 13, 107-114.	5.0	66
10	Interaction Between α-Synuclein and Metal Ions, Still Looking for a Role in the Pathogenesis of Parkinson's Disease. NeuroMolecular Medicine, 2009, 11, 239-251.	1.8	64
11	Dopamine-derived Quinones Affect the Structure of the Redox Sensor DJ-1 through Modifications at Cys-106 and Cys-53. Journal of Biological Chemistry, 2012, 287, 18738-18749.	1.6	61
12	Human SOD2 Modification by Dopamine Quinones Affects Enzymatic Activity by Promoting Its Aggregation: Possible Implications for Parkinson's Disease. PLoS ONE, 2012, 7, e38026.	1.1	59
13	Superoxide Dismutase (SOD)-mimetic M40403 Is Protective in Cell and Fly Models of Paraquat Toxicity. Journal of Biological Chemistry, 2016, 291, 9257-9267.	1.6	56
14	Analysis of the Catecholaminergic Phenotype in Human SH-SY5Y and BE(2)-M17 Neuroblastoma Cell Lines upon Differentiation. PLoS ONE, 2015, 10, e0136769.	1.1	55
15	Diabetes Mellitus as a Risk Factor for Parkinson's Disease: a Molecular Point of View. Molecular Neurobiology, 2018, 55, 8754-8763.	1.9	53
16	α-Synuclein overexpression increases dopamine toxicity in BE(2)-M17 cells. BMC Neuroscience, 2010, 11, 41.	0.8	44
17	Dysfunction of dopamine homeostasis: clues in the hunt for novel Parkinson's disease therapies. FASEB Journal, 2013, 27, 2101-2110.	0.2	42

18 Superoxide Radical Dismutation as New Therapeutic Strategy in Parkinson's Disease. , 2018, 9, 716.

2

MARCO BISAGLIA

#	Article	IF	CITATIONS
19	Dopamine Oxidation Products as Mitochondrial Endotoxins, a Potential Molecular Mechanism for Preferential Neurodegeneration in Parkinson's Disease. ACS Chemical Neuroscience, 2018, 9, 2849-2858.	1.7	42
20	Structural Characterization of a High Affinity Mononuclear Site in the Copper(II)-α-Synuclein Complex. Journal of the American Chemical Society, 2010, 132, 18057-18066.	6.6	36
21	Parkinson's disease and immune system: is the culprit LRRKing in the periphery?. Journal of Neuroinflammation, 2012, 9, 94.	3.1	34
22	The 11-mer repeats of human α-synuclein in vesicle interactions and lipid composition discrimination: A cooperative role. Biopolymers, 2006, 84, 310-316.	1.2	33
23	Circadian Rhythm Abnormalities in Parkinson's Disease from Humans to Flies and Back. International Journal of Molecular Sciences, 2018, 19, 3911.	1.8	33
24	Biophysical groundwork as a hinge to unravel the biology of <i>α</i> -synuclein aggregation and toxicity. Quarterly Reviews of Biophysics, 2014, 47, 1-48.	2.4	32
25	Metformin Repurposing for Parkinson Disease Therapy: Opportunities and Challenges. International Journal of Molecular Sciences, 2022, 23, 398.	1.8	30
26	Superoxide dismutating molecules rescue the toxic effects of PINK1 and parkin loss. Human Molecular Genetics, 2018, 27, 1618-1629.	1.4	28
27	Antioxidant Therapy in Parkinson's Disease: Insights from Drosophila melanogaster. Antioxidants, 2020, 9, 52.	2.2	19
28	DJ-1: A promising therapeutic candidate for ischemia-reperfusion injury. Redox Biology, 2021, 41, 101884.	3.9	18
29	DJ-1 as a deglycating enzyme: A unique function to explain a multifaceted protein?. Neural Regeneration Research, 2017, 12, 1797.	1.6	11
30	Activation of the Nrf2 Pathway as a Therapeutic Strategy for ALS Treatment. Molecules, 2022, 27, 1471.	1.7	6
31	Superoxide Dismutases SOD1 and SOD2 Rescue the Toxic Effect of Dopamine-Derived Products in Human SH-SY5Y Neuroblastoma Cells. Neurotoxicity Research, 2019, 36, 746-755.	1.3	4
32	The Regulation of MiTF/TFE Transcription Factors Across Model Organisms: from Brain Physiology to Implication for Neurodegeneration. Molecular Neurobiology, 2022, 59, 5000-5023.	1.9	3
00	Editorial (Thematic Selection: Critical Analyses of Mechanism-Based Therapies Against Parkinson's) Tj ETQq1 1 C).78 <mark>431<u>4</u> ı</mark>	gBŢ /Over <u>lo</u> cl