
Claudia Volpi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4295500/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Indoleamine 2,3â€dioxygenase 1 (IDO1): an upâ€toâ€date overview of an eclectic immunoregulatory enzyme. FEBS Journal, 2022, 289, 6099-6118.	4.7	56
2	Decoding the Complex Crossroad of Tryptophan Metabolic Pathways. International Journal of Molecular Sciences, 2022, 23, 787.	4.1	7
3	In-depth characterization of phenolic profiling of Moraiolo extra-virgin olive oil extract and initial investigation of the inhibitory effect on Indoleamine-2,3-Dioxygenase (IDO1) enzyme. Journal of Pharmaceutical and Biomedical Analysis, 2022, 213, 114688.	2.8	3
4	Crocus sativus L. Petal Extract Inhibits Inflammation and Osteoclastogenesis in RAW 264.7 Cell Model. Pharmaceutics, 2022, 14, 1290.	4.5	6
5	Current Challenges for IDO2 as Target in Cancer Immunotherapy. Frontiers in Immunology, 2021, 12, 679953.	4.8	24
6	The double life of serotonin metabolites: in the mood for joining neuronal and immune systems. Current Opinion in Immunology, 2021, 70, 1-6.	5.5	19
7	Antioxidant Power on Dermal Cells by Textiles Dyed with an Onion (Allium cepa L.) Skin Extract. Antioxidants, 2021, 10, 1655.	5.1	10
8	Effect of Probiotic Administration on Serum Tryptophan Metabolites in Pediatric Type 1 Diabetes Patients. International Journal of Tryptophan Research, 2020, 13, 117864692095664.	2.3	14
9	Reply to Han et al.: On track for an IDO1-based personalized therapy in autoimmunity. Proceedings of the United States of America, 2020, 117, 24037-24038.	7.1	2
10	Use of a Zwitterionic Surfactant to Improve the Biofunctional Properties of Wool Dyed with an Onion (Allium cepa L.) Skin Extract. Antioxidants, 2020, 9, 1055.	5.1	7
11	Indoleamine 2,3-Dioxygenase 2 Immunohistochemical Expression in Resected Human Non-small Cell Lung Cancer: A Potential New Prognostic Tool. Frontiers in Immunology, 2020, 11, 839.	4.8	28
12	A novel mutation of indoleamine 2,3-dioxygenase 1 causes a rapid proteasomal degradation and compromises protein function. Journal of Autoimmunity, 2020, 115, 102509.	6.5	14
13	Positive allosteric modulation of indoleamine 2,3-dioxygenase 1 restrains neuroinflammation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3848-3857.	7.1	58
14	Artocarpus tonkinensis Extract Inhibits LPS-Triggered Inflammation Markers and Suppresses RANKL-Induced Osteoclastogenesis in RAW264.7. Frontiers in Pharmacology, 2020, 11, 593829.	3.5	6
15	Class IA PI3Ks regulate subcellular and functional dynamics of IDO1. EMBO Reports, 2020, 21, e49756.	4.5	24
16	Preclinical discovery and development of fingolimod for the treatment of multiple sclerosis. Expert Opinion on Drug Discovery, 2019, 14, 1199-1212.	5.0	25
17	Engagement of Nuclear Coactivator 7 by 3-Hydroxyanthranilic Acid Enhances Activation of Aryl Hydrocarbon Receptor in Immunoregulatory Dendritic Cells. Frontiers in Immunology, 2019, 10, 1973.	4.8	47
18	<scp>IL</scp> â€35Ig–expressing dendritic cells induce tolerance via Arginase 1. Journal of Cellular and Molecular Medicine, 2019, 23, 3757-3761.	3.6	9

CLAUDIA VOLPI

#	Article	IF	CITATIONS
19	Amino acid metabolism as drug target in autoimmune diseases. Autoimmunity Reviews, 2019, 18, 334-348.	5.8	48
20	Onion (Allium cepa L.) Skin: A Rich Resource of Biomolecules for the Sustainable Production of Colored Biofunctional Textiles. Molecules, 2019, 24, 634.	3.8	37
21	Targeting metabotropic glutamate receptors for the treatment of neuroinflammation. Current Opinion in Pharmacology, 2018, 38, 16-23.	3.5	33
22	Opportunities and challenges in drug discovery targeting metabotropic glutamate receptor 4. Expert Opinion on Drug Discovery, 2018, 13, 411-423.	5.0	6
23	Deficiency of immunoregulatory indoleamine 2,3-dioxygenase 1in juvenile diabetes. JCI Insight, 2018, 3, .	5.0	51
24	A Relay Pathway between Arginine and Tryptophan Metabolism Confers Immunosuppressive Properties on Dendritic Cells. Immunity, 2017, 46, 233-244.	14.3	241
25	Advances in indoleamine 2,3-dioxygenase 1 medicinal chemistry. MedChemComm, 2017, 8, 1378-1392.	3.4	33
26	Amino-acid sensing and degrading pathways in immune regulation. Cytokine and Growth Factor Reviews, 2017, 35, 37-45.	7.2	79
27	Challenges in the design of reliable immuno-oncology mouse models to inform drug development. Future Medicinal Chemistry, 2017, 9, 1313-1317.	2.3	4
28	Distinct roles of immunoreceptor tyrosineâ€based motifs in immunosuppressive indoleamine 2,3â€dioxygenase 1. Journal of Cellular and Molecular Medicine, 2017, 21, 165-176.	3.6	51
29	The Proteasome Inhibitor Bortezomib Controls Indoleamine 2,3-Dioxygenase 1 Breakdown and Restores Immune Regulation in Autoimmune Diabetes. Frontiers in Immunology, 2017, 8, 428.	4.8	28
30	CpG Type A Induction of an Early Protective Environment in Experimental Multiple Sclerosis. Mediators of Inflammation, 2017, 2017, 1-12.	3.0	7
31	Differentiation of Myeloid-derived Suppressor Cells from Murine Bone Marrow and Their Co-culture with Splenic Dendritic Cells. Bio-protocol, 2017, 7, .	0.4	9
32	Allosteric modulation of metabotropic glutamate receptor 4 activates IDO1-dependent, immunoregulatory signaling in dendritic cells. Neuropharmacology, 2016, 102, 59-71.	4.1	29
33	Islet antigen-pulsed dendritic cells expressing ectopic IL-35Ig protect nonobese diabetic mice from autoimmune diabetes. Cytokine, 2015, 75, 380-388.	3.2	8
34	IDO1 suppresses inhibitor development in hemophilia A treated with factor VIII. Journal of Clinical Investigation, 2015, 125, 3766-3781.	8.2	39
35	Forced IDO 1 expression in dendritic cells restores immunoregulatory signalling in autoimmune diabetes. Journal of Cellular and Molecular Medicine, 2014, 18, 2082-2091.	3.6	47
36	Cinnabarinic acid, an endogenous agonist of type-4 metabotropic glutamate receptor, suppresses experimental autoimmune encephalomyelitis in mice. Neuropharmacology, 2014, 81, 237-243.	4.1	48

CLAUDIA VOLPI

#	Article	IF	CITATIONS
37	Aryl hydrocarbon receptor control of a disease tolerance defence pathway. Nature, 2014, 511, 184-190.	27.8	574
38	High doses of CpG oligodeoxynucleotides stimulate a tolerogenic TLR9–TRIF pathway. Nature Communications, 2013, 4, 1852.	12.8	102
39	A GpC-Rich Oligonucleotide Acts on Plasmacytoid Dendritic Cells To Promote Immune Suppression. Journal of Immunology, 2012, 189, 2283-2289.	0.8	22
40	Indoleamine 2,3-dioxygenase is a signaling protein in long-term tolerance by dendritic cells. Nature Immunology, 2011, 12, 870-878.	14.5	577
41	Proteasomal Degradation of Indoleamine 2,3-Dioxygenase in CD8 ⁺ Dendritic Cells is Mediated by Suppressor of Cytokine Signaling 3 (SOCS3). International Journal of Tryptophan Research, 2010, 3, IJTR.S3971.	2.3	23
42	Metabotropic glutamate receptor-4 modulates adaptive immunity and restrains neuroinflammation. Nature Medicine, 2010, 16, 897-902.	30.7	138
43	IDO Mediates TLR9-Driven Protection from Experimental Autoimmune Diabetes. Journal of Immunology, 2009, 183, 6303-6312.	0.8	101
44	Cutting Edge: Autocrine TGF-β Sustains Default Tolerogenesis by IDO-Competent Dendritic Cells. Journal of Immunology, 2008, 181, 5194-5198.	0.8	154
45	SOCS3 drives proteasomal degradation of indoleamine 2,3-dioxygenase (IDO) and antagonizes IDO-dependent tolerogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20828-20833.	7.1	187
46	CTLA-4-immunoglobulin and indoleamine 2,3-dioxygenase in dominant tolerance. , 2008, , 87-106.		1
47	Immunosuppression Via Tryptophan Catabolism: The Role of Kynurenine Pathway Enzymes. Transplantation, 2007, 84, S17-S20.	1.0	82
48	Reverse signaling through GITR ligand enables dexamethasone to activate IDO in allergy. Nature Medicine, 2007, 13, 579-586.	30.7	298
49	IL-23 neutralization protects mice from Gram-negative endotoxic shock. Cytokine, 2006, 34, 161-169.	3.2	22
50	Tryptophan catabolism generates autoimmune-preventive regulatory T cells. Transplant Immunology, 2006, 17, 58-60.	1.2	97
51	The Combined Effects of Tryptophan Starvation and Tryptophan Catabolites Down-Regulate T Cell Receptor ζ-Chain and Induce a Regulatory Phenotype in Naive T Cells. Journal of Immunology, 2006, 176, 6752-6761.	0.8	943
52	Kynurenine Pathway Enzymes in Dendritic Cells Initiate Tolerogenesis in the Absence of Functional IDO. Journal of Immunology, 2006, 177, 130-137.	0.8	164
53	Enhanced tryptophan catabolism in the absence of the molecular adapter DAP12. European Journal of Immunology, 2005, 35, 3111-3118.	2.9	38
54	Cutting Edge: Silencing Suppressor of Cytokine Signaling 3 Expression in Dendritic Cells Turns CD28-Ig from Immune Adjuvant to Suppressant. Journal of Immunology, 2005, 174, 6582-6586.	0.8	88

2

CD28 induces immunostimulatory signals in dendritic cells via CD80 and CD86. Nature Immunology, 14.5 262 2004, 5, 1134-1142.	#	Article	IF	CITATIONS
	55	CD28 induces immunostimulatory signals in dendritic cells via CD80 and CD86. Nature Immunology, 2004, 5, 1134-1142.	14.5	262

56 Serotonin Pathway in Neuroimmune Network. , 0, , .