
Valery V Ragulin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4295167/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparative Evaluation of the Properties of Aminopolyphosphonates as Chemical Precursors of Samarium-153 Radiopharmaceuticals. Russian Journal of General Chemistry, 2022, 92, 878-890.	0.3	1
2	Mechanism of Phosphorus–Carbon Bond Formation in the Amidoalkylation of Phosphonous Carboxylic Acids. Journal of Organic Chemistry, 2021, 86, 593-600.	1.7	8
3	Synthesis, Complexation Properties, and Evaluation of New Aminodiphosphonic Acids as Vector Molecules for 68Ga Radiopharmaceuticals. Molecules, 2021, 26, 2357.	1.7	2
4	Synthesis of Phosphinic Isosteres of Leucyl- and Isoleucylglycines. Russian Journal of General Chemistry, 2020, 90, 1636-1640.	0.3	0
5	Synthesis of Phosphinic Analogue of Alanylleucine. Russian Journal of General Chemistry, 2020, 90, 753-756.	0.3	0
6	Double Arbuzov Reaction. Synthesis of Bis(ω-cyanoalkyl)phosphinic Acids. Russian Journal of General Chemistry, 2019, 89, 1728-1730.	0.3	0
7	Phosphonic Aminocarboxylic Acids. Russian Journal of General Chemistry, 2018, 88, 159-187.	0.3	2
8	2,5-Diamino-5,5-diphosphonovaleric Acid as a Ligand for an Osteotropic 188Re Radiopharmaceutical. Russian Journal of General Chemistry, 2018, 88, 1780-1785.	0.3	1
9	Synthesis of 2-Amino-5-hydroxy-5-phosphonovaleric Acid. Russian Journal of General Chemistry, 2018, 88, 1915-1917.	0.3	0
10	Phosphorus-Containing Aminocarboxylic Acids: XV. α,ω-Diamino-ω,ω-diphosphonoalkylcarboxylic Acids. Russian Journal of General Chemistry, 2018, 88, 1045-1048.	0.3	1
11	An efficient one-pot synthesis of bis(α-aminoalkyl)phosphinic acids, phosphorus-isosteric analogues of HIV protease inhibitors. Mendeleev Communications, 2018, 28, 295-296.	0.6	2
12	Synthesis of P,N-protected phosphinic pseudoprolylglycine block. Russian Journal of General Chemistry, 2017, 87, 266-269.	0.3	7
13	One-pot synthesis of <i>N</i> -Cbz-α-aminophosphonic acids. Phosphorus, Sulfur and Silicon and the Related Elements, 2017, 192, 437-441.	0.8	3
14	Synthesis of prolyl-glutamate phosphoisostere. Russian Journal of General Chemistry, 2017, 87, 2489-2492.	0.3	3
15	Cyclic Amidoalkylation of Hydrophosphorylic Compounds. Synthesis of Proline Analogs. Russian Journal of General Chemistry, 2017, 87, 2898-2901.	0.3	4
16	Double Michael–Pudovik addition of generated in situ silylic esters of trivalent phosphorus to unsaturated compounds. Russian Journal of General Chemistry, 2016, 86, 2706-2709.	0.3	0
17	Synthesis of pseudoalanylalanine. Russian Journal of General Chemistry, 2016, 86, 2717-2720.	0.3	1
18	NMR study of 1,7-diamino-4-oxyheptane-1,1,7,7-tetraphosphonic acid interaction with samarium(III) cation. Russian Journal of General Chemistry, 2016, 86, 639-644.	0.3	3

VALERY V RAGULIN

#	Article	IF	CITATIONS
19	Synthesis of phosphonomethylornithine. Russian Journal of General Chemistry, 2016, 86, 735-738.	0.3	1
20	Amidoalkylation of phosphorous acid. Russian Journal of General Chemistry, 2015, 85, 366-369.	0.3	2
21	Formation of phosphorus-carbon bond in the course of amidoalkylation of hydrophosphorylic compounds. Russian Journal of General Chemistry, 2015, 85, 497-499.	0.3	Ο
22	Cyclen-containing phosphonic acids as components of osteotropic 68Ga radiopharmaceuticals. Russian Journal of General Chemistry, 2015, 85, 2071-2079.	0.3	8
23	Synthesis of phosphorus isosters of β-amyloid peptides fragments. Russian Journal of General Chemistry, 2015, 85, 2091-2098.	0.3	5
24	Synthesis of pseudo-methionyl-glutamate. Russian Journal of General Chemistry, 2015, 85, 2215-2218.	0.3	3
25	Acyloxy derivatives of trivalent phosphorus in amidoalkylation of hydrophosphoryl compounds. Russian Journal of General Chemistry, 2013, 83, 1888-1894.	0.3	3
26	Acetals and N,N′-alkylidenebiscarbamates in the synthesis of N-protected α-aminophosphinic acids. Russian Journal of General Chemistry, 2012, 82, 1882-1885.	0.3	6
27	ï‰-haloalkylphosphoryl compounds: Synthesis and properties. Russian Journal of General Chemistry, 2012, 82, 1928-1937.	0.3	19
28	Arbuzov-type reaction of acylphosphonites and N-alkoxycarbonylimine cations generated in situ with trifluoroacetic anhydride. Tetrahedron Letters, 2012, 53, 1634-1636.	0.7	29
29	Amidoalkylation of hydrophosphoryl compounds. Russian Journal of General Chemistry, 2011, 81, 1092-1104.	0.3	17
30	Method of synthesis of phosphinic acids based on hypophosphites: VIII. Synthesis of α-aminoalkylphenethylphosphinic acids. Russian Journal of General Chemistry, 2011, 81, 1786-1791.	0.3	3
31	Synthesis of tetra- and octaphosphoryl-containing phthalocyanines. Protection of Metals and Physical Chemistry of Surfaces, 2011, 47, 457-464.	0.3	3
32	New opinions on the amidoalkylation of hydrophosphorylic compounds. Tetrahedron Letters, 2010, 51, 2613-2616.	0.7	40
33	Extraction of rare-earth elements by diphenylphosphinylmethyl-2-phenylethylphosphinic acid from nitrate solutions. Russian Journal of Inorganic Chemistry, 2009, 54, 486-492.	0.3	0
34	A method of synthesis of phosphinic acids on the basis of hypophosphites: VII. Synthesis of pseudo-Î ³ -aminobutanoyl peptides and other phosphinic analogs of Î ³ -aminobutyric acid. Russian Journal of General Chemistry, 2008, 78, 1655-1661.	0.3	7
35	Synthesis of phosphinic acids on the basis of hypophosphites: VI. General methods for synthesis of pseudo-Î ³ -glutamylpeptides. Russian Journal of General Chemistry, 2007, 77, 861-865.	0.3	7
36	Method for the synthesis of phosphinic acids from hypophosphites V. The synthesis of pseudo-α,α-dipeptides. Amino Acids, 2005, 29, 139-143.	1.2	23

VALERY V RAGULIN

#	Article	IF	CITATIONS
37	Differential Regulation of Nitrate Reductase Gene Expression in Corn Cockle Embryos by Cytokinin and Nitrate. Doklady Biochemistry and Biophysics, 2005, 404, 360-362.	0.3	2
38	Extraction Properties of Bis(diphenylphosphinylethyl)phosphinic Acid in Nitric Acid Solutions. Radiochemistry, 2005, 47, 278-283.	0.2	2
39	Phosphorus-containing Aminocarboxylic Acids: XIV. Synthesis of Analogs of α-Substituted Glutamic Acid. Russian Journal of General Chemistry, 2005, 75, 1077-1084.	0.3	3
40	One-Pot Synthesis of α-Amino Phosphinic Acids. Russian Journal of General Chemistry, 2004, 74, 142-143.	0.3	4
41	A Method for Preparing Phosphinic Acids from Hypophosphites: III. Synthesis of α-Hydroxy Phosphinic Acids. Russian Journal of General Chemistry, 2004, 74, 1087-1090.	0.3	1
42	Synthesis of phosphinic acids on the basis of hypophosphites: IV. Synthesis of pseudo-Î ³ -glutamylglycine and its enantiomers. Russian Journal of General Chemistry, 2004, 74, 1177-1181.	0.3	5
43	Enzymatic synthesis of the enantiomers of 2-amino-2-methyl-4-phosphonobutyric acid. Russian Journal of General Chemistry, 2004, 74, 1297-1299.	0.3	2
44	Synthesis of phosphinothricine and other phosphorylic analogues of glutamic acid. Mendeleev Communications, 1997, 7, 69-70.	0.6	17
45	Phosphorus-containing aminocarboxylic acids. Part VIII. Synthesis and characterization of peptides based on 2-amino-5-phosphonovaleric acid. Pharmaceutical Chemistry Journal, 1997, 31, 365-367.	0.3	0
46	PHOSPHORUS CONTAINING AMINOCARBOXYLIC ACIDS. COMMUNICATION V.1METHOD FOR SYNTHESIS OF PHOSPHINIC ACIDS. Phosphorus, Sulfur and Silicon and the Related Elements, 1994, 88, 271-274.	0.8	12
47	PHOSPHORUS-CONTAINING AMINOCARBOXYLIC ACIDS. COMMUNICATION IV. ¹ A CONVENIENT METHOD OF PHOSPHONIC ACIDS SYNTHESIS. Phosphorus, Sulfur and Silicon and the Related Elements, 1991, 62, 237-241.	0.8	4
48	Phosphorus-containing aminocarboxylic acids with an o-xylylene fragment. III. Pharmaceutical Chemistry Journal, 1991, 25, 209-212.	0.3	0
49	Phosphorus-containing aminocarboxylic acids. 1. Method of preparation of phosphonate-type compounds. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1989, 38, 2377-2382.	0.0	1
50	Simple method for the preparation of dialkylphosphonic acids. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1988, 37, 2393-2393.	0.0	3
51	Anticonvulsant activity of glutamate receptor antagonists in the series of phosphorus-containing amino acids. Pharmaceutical Chemistry Journal, 1988, 22, 195-197.	0.3	Ο