
Simon R Junankar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4294547/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Abstract P1-04-04: Dna barcoding reveals ongoing immunoediting of clonal cancer populations during metastatic progression and in response to immunotherapy. Cancer Research, 2022, 82, P1-04-04-P1-04-04.	0.9	Ο
2	Inhibitor of Differentiation 4 (ID4) represses mammary myoepithelial differentiation via inhibition of HEB. IScience, 2021, 24, 102072.	4.1	6
3	Cryopreservation of human cancers conserves tumour heterogeneity for single-cell multi-omics analysis. Genome Medicine, 2021, 13, 81.	8.2	25
4	Abstract 129: An integrated multi-omic cellular atlas of human breast cancers. Cancer Research, 2021, 81, 129-129.	0.9	3
5	A single-cell and spatially resolved atlas of human breast cancers. Nature Genetics, 2021, 53, 1334-1347.	21.4	535
6	Stromal cell diversity associated with immune evasion in human tripleâ€negative breast cancer. EMBO Journal, 2020, 39, e104063.	7.8	224
7	Id Proteins Promote a Cancer Stem Cell Phenotype in Mouse Models of Triple Negative Breast Cancer via Negative Regulation of Robo1. Frontiers in Cell and Developmental Biology, 2020, 8, 552.	3.7	18
8	Proteogenomic analysis of Inhibitor of Differentiation 4 (ID4) in basal-like breast cancer. Breast Cancer Research, 2020, 22, 63.	5.0	8
9	MTOR signaling orchestrates stress-induced mutagenesis, facilitating adaptive evolution in cancer. Science, 2020, 368, 1127-1131.	12.6	83
10	High-throughput targeted long-read single cell sequencing reveals the clonal and transcriptional landscape of lymphocytes. Nature Communications, 2019, 10, 3120.	12.8	202
11	Epigenomics of mammary gland development. Breast Cancer Research, 2018, 20, 100.	5.0	30
12	A mutation in the viral sensor 2'-5'-oligoadenylate synthetase 2 causes failure of lactation. PLoS Genetics, 2017, 13, e1007072.	3.5	21
13	ID4 controls mammary stem cells and marks breast cancers with a stem cell-like phenotype. Nature Communications, 2015, 6, 6548.	12.8	49
14	Real-Time Intravital Imaging Establishes Tumor-Associated Macrophages as the Extraskeletal Target of Bisphosphonate Action in Cancer. Cancer Discovery, 2015, 5, 35-42.	9.4	133
15	c-Myc and Her2 cooperate to drive a stem-like phenotype with poor prognosis in breast cancer. Oncogene, 2014, 33, 3992-4002.	5.9	88
16	Could the properties of IL-27 make it an ideal adjuvant for anticancer immunotherapy?. Oncolmmunology, 2013, 2, e25409.	4.6	8
17	Cathepsin C is a tissue-specific regulator of squamous carcinogenesis. Genes and Development, 2013, 27, 2086-2098.	5.9	74
18	Interleukin-27 Signaling Promotes Immunity against Endogenously Arising Murine Tumors. PLoS ONE, 2013, 8, e57469.	2.5	23

SIMON R JUNANKAR

#	Article	IF	CITATIONS
19	FcRÎ ³ Activation Regulates Inflammation-Associated Squamous Carcinogenesis. Cancer Cell, 2010, 17, 121-134.	16.8	537
20	Stromal regulation of vessel stability by MMP14 and TGFβ. DMM Disease Models and Mechanisms, 2010, 3, 317-332.	2.4	82
21	Redefining the Expression and Function of the Inhibitor of Differentiation 1 in Mammary Gland Development. PLoS ONE, 2010, 5, e11947.	2.5	10
22	Tumor-induced anorexia and weight loss are mediated by the TGF-β superfamily cytokine MIC-1. Nature Medicine, 2007, 13, 1333-1340.	30.7	489
23	Analysis of Immune Cell Infiltrates during Squamous Carcinoma Development. Journal of Investigative Dermatology Symposium Proceedings, 2006, 11, 36-43.	0.8	22
24	The Propeptide Mediates Formation of Stromal Stores of PROMIC-1: Role in Determining Prostate Cancer Outcome. Cancer Research, 2005, 65, 2330-2336.	0.9	129