
## Jun Yang

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4294542/publications.pdf Version: 2024-02-01



Ιτίνι Υλνις

| #  | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Yeast Nop2 and Rcm1 methylate C2870 and C2278 of the 25S rRNA, respectively. Nucleic Acids Research, 2013, 41, 9062-9076.                                                                                               | 14.5 | 158       |
| 2  | A novel highly acidic β-mannanase from the acidophilic fungus Bispora sp. MEY-1: gene cloning and overexpression in Pichia pastoris. Applied Microbiology and Biotechnology, 2009, 82, 453-461.                         | 3.6  | 97        |
| 3  | Specialized box C/D snoRNPs act as antisense guides to target RNA base acetylation. PLoS Genetics, 2017, 13, e1006804.                                                                                                  | 3.5  | 92        |
| 4  | A thermophilic and acid stable family-10 xylanase from the acidophilic fungus Bispora sp. MEY-1.<br>Extremophiles, 2009, 13, 849-857.                                                                                   | 2.3  | 91        |
| 5  | Molecular cloning and characterization of the novel acidic xylanase XYLD from Bispora sp. MEY-1 that<br>is homologous to family 30 glycosyl hydrolases. Applied Microbiology and Biotechnology, 2010, 86,<br>1829-1839. | 3.6  | 65        |
| 6  | Mapping of Complete Set of Ribose and Base Modifications of Yeast rRNA by RP-HPLC and Mung Bean<br>Nuclease Assay. PLoS ONE, 2016, 11, e0168873.                                                                        | 2.5  | 55        |
| 7  | Gene cloning and expression of a new acidic family 7 endo-β-1,3-1,4-glucanase from the acidophilic fungus Bispora sp. MEY-1. Applied Microbiology and Biotechnology, 2010, 85, 1015-1023.                               | 3.6  | 49        |
| 8  | Mammalian Nudix proteins cleave nucleotide metabolite caps on RNAs. Nucleic Acids Research, 2020,<br>48, 6788-6798.                                                                                                     | 14.5 | 46        |
| 9  | Cloning, expression and characterization of an acidic endo-polygalacturonase from Bispora sp. MEY-1 and its potential application in juice clarification. Process Biochemistry, 2011, 46, 272-277.                      | 3.7  | 43        |
| 10 | Identification of novel methyltransferases, Bmt5 and Bmt6, responsible for the m3U methylations of 25S rRNA in Saccharomyces cerevisiae. Nucleic Acids Research, 2014, 42, 3246-3260.                                   | 14.5 | 35        |
| 11 | Cloning, expression and characterization of a novel acidic xylanase, XYL11B, from the acidophilic fungus Bispora sp. MEY-1. Enzyme and Microbial Technology, 2009, 45, 126-133.                                         | 3.2  | 34        |
| 12 | Identification of the 3-amino-3-carboxypropyl (acp) transferase enzyme responsible for acp3U<br>formation at position 47 in Escherichia coli tRNAs. Nucleic Acids Research, 2020, 48, 1435-1450.                        | 14.5 | 28        |
| 13 | Identification of a new ribose methylation in the 18S rRNA of S. cerevisiae. Nucleic Acids Research, 2015, 43, 2342-2352.                                                                                               | 14.5 | 19        |
| 14 | Xrn1 is a deNADding enzyme modulating mitochondrial NAD-capped RNA. Nature Communications, 2022, 13, 889.                                                                                                               | 12.8 | 15        |
| 15 | Mapping of the Chemical Modifications of rRNAs. Methods in Molecular Biology, 2022, , 181-197.                                                                                                                          | 0.9  | 1         |